1
|
Wang Y, Liu S, Zhang L, Nagib A, Li Q, Geng R, Yu X, Xu T, Zhang S, Duan R, Ma C, Abd El-Aty AM. Formation, characterization, and application of natural bioactive phytosterol-based oleogels: A review. Food Chem 2024; 454:139821. [PMID: 38815329 DOI: 10.1016/j.foodchem.2024.139821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
Oleogels are innovative structured fat systems that can replace detrimental lipids and saturated fats. Among the various gelators used to construct oleogels, phytosterols are regarded as potential oleogelators due to ability to lower blood cholesterol levels and protect patients from cardiovascular illnesses, although little research has been conducted on phytosterols. This article examines the formation, characterization, and application of phytosterol-based oleogels in detail. The oleogelation behaviors of phytosterol-based oleogels are affected by their formulation, which includes phytosterol type, combined oleogelator, proportion, concentration and oil type. These oleogels exhibit potential applications as solid fat substitutes without affecting the texture or sensory properties of food products or as effective delivery vehicles. To encourage the research and implementation of phytosterol-based oleogels, we will ultimately not only highlight problems related to their use in food processing, but also provide a few viewpoints, with the goal of providing fresh insights for advancing trends.
Collapse
Affiliation(s)
- Yuhui Wang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
| | - Shiqi Liu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| | - Lulu Zhang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| | - Ashraf Nagib
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt
| | - Qianqian Li
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| | - Ruyi Geng
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| | - Xinyu Yu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| | - Ting Xu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| | - Shuaijia Zhang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| | - Ruoyu Duan
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| | - Chao Ma
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China.
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey.
| |
Collapse
|
2
|
Chowdhury B, Sharma A, Akshit FNU, Mohan MS, Salunke P, Anand S. A review of oleogels applications in dairy foods. Crit Rev Food Sci Nutr 2024; 64:9691-9709. [PMID: 37229559 DOI: 10.1080/10408398.2023.2215871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The characteristics of dairy products, such as texture, color, flavor, and nutritional profile, are significantly influenced by the presence of milk fat. However, saturated fatty acids account for 65% of total milk fat. With increased health awareness and regulatory recommendations, consumer preferences have evolved toward low/no saturated fat food products. Reducing the saturated fat content of dairy products to meet market demands is an urgent yet challenging task, as it may compromise product quality and increase production costs. In this regard, oleogels have emerged as a viable milk fat replacement in dairy foods. This review focuses on recent advances in oleogel systems and explores their potential for incorporation into dairy products as a milk fat substitute. Overall, it can be concluded that oleogel can be a potential alternative to replace milk fat fully or partially in the product matrix to improve nutritional profile by mimicking similar rheological and textural product characteristics as milk fat. Furthermore, the impact of consuming oleogel-based dairy foods on digestibility and gut health is also discussed. A thorough comprehension of the application of oleogels in dairy products will provide an opportunity for the dairy sector to develop applications that will appeal to the changing consumer needs.
Collapse
Affiliation(s)
- Bhaswati Chowdhury
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - Aditya Sharma
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - F N U Akshit
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - Maneesha S Mohan
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - Prafulla Salunke
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - Sanjeev Anand
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
3
|
Lapčíková B, Lapčík L, Valenta T, Neuwirth V. Chocolate Ganaches: Formulation, Processing and Stability in View of the New Production Trends. Foods 2024; 13:2543. [PMID: 39200471 PMCID: PMC11353510 DOI: 10.3390/foods13162543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
This review aims at the current trends in chocolate ganache production and recipe formulation. Ganache is a blend of chocolate, sugars, dairy, and other ingredients commonly used to fill pralines, pastries, etc. In spite of ganache's popularity in the food industry, a comprehensive review focused on the application of functional substances and ganache processing has not been discussed in the scientific literature. This review addresses the new ways of applying special ingredients, such as vegetable fats and seeds, flavor infusions, oleogels, hemp products, etc., which can be added to the ganache matrix to achieve desirable properties. In particular, the application of sterols and sterol esters as functional substances of oleogels seems to be a very promising method, enhancing the ganache fat profile. The elevated caloric content that is characteristic of ganache can be substantially attenuated through the application of hydrocolloids and/or fruit-based components, thereby offering the potential for caloric reduction without compromising on taste. The various alterations to ganache formulations by the application of natural substances offer a large base for the development of novel ganache variants and relevant food products.
Collapse
Affiliation(s)
- Barbora Lapčíková
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlin, Nám. T.G. Masaryka 5555, CZ-760 01 Zlin, Czech Republic; (T.V.); (V.N.)
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, CZ-771 46 Olomouc, Czech Republic
| | - Lubomír Lapčík
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlin, Nám. T.G. Masaryka 5555, CZ-760 01 Zlin, Czech Republic; (T.V.); (V.N.)
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, CZ-771 46 Olomouc, Czech Republic
| | - Tomáš Valenta
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlin, Nám. T.G. Masaryka 5555, CZ-760 01 Zlin, Czech Republic; (T.V.); (V.N.)
| | - Vojtěch Neuwirth
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlin, Nám. T.G. Masaryka 5555, CZ-760 01 Zlin, Czech Republic; (T.V.); (V.N.)
| |
Collapse
|
4
|
Fernandes Almeida R, Aguiar Borges L, Torres da Silva T, Serafim Timóteo Dos Santos N, Gianasi F, Augusto Caldas Batista E, Efraim P. Chocolates, compounds and spreads: A review on the use of oleogels, hydrogels and hybrid gels to reduce saturated fat content. Food Res Int 2024; 178:113986. [PMID: 38309886 DOI: 10.1016/j.foodres.2024.113986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 02/05/2024]
Abstract
This study is a bibliometric analysis and literature review on the use of oleogels (OGs), hydrogels (HGs) and hybrid gels (HYGs) in chocolate, compounds and spreads with the aim of reducing the saturated fat in these products. The articles were selected by analyzing titles, keywords and abstracts in the Web of Science (WoS), Scopus and Google Scholar databases. Supplementary documents were obtained from government sources, including patent registrations. The theoretical and practical aspects were critically analyzed, highlighting the main points of agreement and disagreement between the authors. The results revealed a lack of regulations and official guidelines that widely allow the use of OGs, HGs and HYGs in chocolate confectionery products. The type and characteristics of raw materials affect the properties of products. Replacing cocoa butter (CB) with OGs, HGs or HYGs also affects texture, melting point and behavior, and nutritional aspects. These substitutions can result in products with better sensory acceptance and health benefits, such as reducing saturated fat and promoting cardiovascular health. However, it is important to find the ideal combination and proportions of components to obtain the desired properties in the final products.
Collapse
Affiliation(s)
- Rafael Fernandes Almeida
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), 13083-862, Campinas, São Paulo, Brazil
| | - Lara Aguiar Borges
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), 13083-862, Campinas, São Paulo, Brazil
| | - Thayná Torres da Silva
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), 13083-862, Campinas, São Paulo, Brazil
| | - Nereide Serafim Timóteo Dos Santos
- Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), 13083-862, Campinas, São Paulo, Brazil
| | - Felipe Gianasi
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), 13083-862, Campinas, São Paulo, Brazil
| | - Eduardo Augusto Caldas Batista
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), 13083-862, Campinas, São Paulo, Brazil
| | - Priscilla Efraim
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), 13083-862, Campinas, São Paulo, Brazil.
| |
Collapse
|
5
|
Li L, Liu G. Engineering effect of oleogels with different structuring mechanisms on the crystallization behavior of cocoa butter. Food Chem 2023; 422:136292. [PMID: 37150114 DOI: 10.1016/j.foodchem.2023.136292] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/09/2023]
Abstract
As promising cocoa butter (CB) alternatives, oleogels have the potential to prevent fat blooms of chocolate. We aimed to explore possible reasons for the bloom resistance of oleogels by investigating the crystallization behavior of CB-oleogel blends, including crystallization kinetics, thermodynamic properties, crystal polymorphism, and oil distribution. Oleogels structured by monoglyceric stearate (MO), β-sitosterol/lecithin (SLO), and ethylcellulose (EO) were selected as representative oleogels with various structuring-mechanisms. Crystallization kinetic results showed that the crystallization dimension of CB-oleogel increased with the oleogel proportion (from one-dimensional to multi-dimensional), confirming that CB crystallization was inhibited. The presence of liquid oil and oleogelators in oleogels may increase the free energy barrier for CB crystallization. The proton mobility of liquid oil in CB-MO was lower because MO was more tightly bound to CB. The crystallization mechanism of the CB-oleogel suggested that the inhibitory effect of oleogels on CB crystallization delayed the polymorphic transition, thereby improving the bloom stability of chocolate.
Collapse
Affiliation(s)
- Linlin Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guoqin Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Products Safety, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
6
|
Sawalha H, Venema P, Flöter E. Effect of type of emulsifier and co‐solvent on the morphology, thermal, and mechanical properties of γ‐oryzanol and β‐sitosterol organogels. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Hassan Sawalha
- Mechanical Engineering Department Palestine Polytechnic University Hebron Palestine
| | - Paul Venema
- Laboratory of Physics and Physical Chemistry of Foods, Department of Agrotechnology and Food Sciences Wageningen University WG Wageningen The Netherlands
| | - Eckhard Flöter
- Food Process Engineering, Department of Food Technology and Food Chemistry Technical University Berlin Berlin Germany
| |
Collapse
|
7
|
Silva PM, Cerqueira MA, Martins AJ, Fasolin LH, Cunha RL, Vicente AA. Oleogels and bigels as alternatives to saturated fats: A review on their application by the food industry. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pedro M. Silva
- Centre of Biological Engineering University of Minho Braga Portugal
- International Iberian Nanotechnology Laboratory Braga Portugal
| | | | | | - Luiz H. Fasolin
- Department of Food Engineering and Technology School of Food Engineering, University of Campinas – UNICAMP Campinas São Paulo Brazil
| | - Rosiane L. Cunha
- Department of Food Engineering and Technology School of Food Engineering, University of Campinas – UNICAMP Campinas São Paulo Brazil
| | | |
Collapse
|
8
|
Recent advances in fabrication of food grade oleogels: structuring methods, functional properties and technical feasibility in food products. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Sivakanthan S, Fawzia S, Madhujith T, Karim A. Synergistic effects of oleogelators in tailoring the properties of oleogels: A review. Compr Rev Food Sci Food Saf 2022; 21:3507-3539. [PMID: 35591753 DOI: 10.1111/1541-4337.12966] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/24/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022]
Abstract
Conventional solid fats play a crucial role as an ingredient in many processed foods. However, these fats contain a high amount of saturated fats and trans fats. Legislations and dietary recommendations related to these two types of fats set forth as a consequence of evidence showing their deleterious health impact have triggered the attempts to find alternate tailor-made lipids for these solid fats. Oleogels is considered as a novel alternative, which has reduced saturated fat and no trans fat content. In addition to mimicking the distinctive characteristics of solid fats, oleogels can be developed to contain a high amount of polyunsaturated fatty acids and used to deliver bioactives. Although there has been a dramatic rise in the interest in developing oleogels for food applications over the past decade, none of them has been commercially used in foods so far due to the deficiency in their crystal network structure, particularly in monocomponent gels. Very recently, there is a surge in the interest in using of combination of gelators due to the synergistic effects that aid in overcoming the drawbacks in monocomponent gels. However, currently, there is no comprehensive insight into synergism among oleogelators reported in recent studies. Therefore, a comprehensive intuition into the findings reported on synergism is crucial to fill this gap. The objective of this review is to give a comprehensive insight into synergism among gelators based on recent literature. This paper also identifies the future research propositions towards developing oleogels capable of exactly mimicking the properties of conventional solid fats to bridge the gap between laboratory research and the food industry.
Collapse
Affiliation(s)
- Subajiny Sivakanthan
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.,Department of Agricultural Chemistry, Faculty of Agriculture, University of Jaffna, Kilinochchi, Sri Lanka.,Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Sabrina Fawzia
- School of Civil and Environmental Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Terrence Madhujith
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Azharul Karim
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
10
|
Cui X, Saleh ASM, Yang S, Wang N, Wang P, Zhu M, Xiao Z. Oleogels as Animal Fat and Shortening Replacers: Research Advances and Application Challenges. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- XiaoTong Cui
- College of Food, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Ahmed. S. M. Saleh
- Department of Food Science and Technology, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Shu Yang
- College of Life Science and Bioengineering, Shenyang University, Shenyang, Liaoning, China
| | - Na Wang
- Department of Food Science, College of Light Industry, Liaoning University, Shenyany, Liaoning, China
| | - Peng Wang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning, China
| | - Minpeng Zhu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning, China
| | - Zhigang Xiao
- College of Food, Shenyang Agricultural University, Shenyang, Liaoning, China
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning, China
| |
Collapse
|
11
|
Li L, Liu G, Bogojevic O, Pedersen JN, Guo Z. Edible oleogels as solid fat alternatives: Composition and oleogelation mechanism implications. Compr Rev Food Sci Food Saf 2022; 21:2077-2104. [DOI: 10.1111/1541-4337.12928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 01/05/2022] [Accepted: 01/26/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Linlin Li
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Department of Biological and Chemical Engineering, Faculty of Technical Science Aarhus University Aarhus Denmark
| | - Guoqin Liu
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Products Safety South China University of Technology Guangzhou China
| | - Oliver Bogojevic
- Department of Biological and Chemical Engineering, Faculty of Technical Science Aarhus University Aarhus Denmark
| | - Jacob Nedergaard Pedersen
- Department of Biological and Chemical Engineering, Faculty of Technical Science Aarhus University Aarhus Denmark
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Faculty of Technical Science Aarhus University Aarhus Denmark
| |
Collapse
|
12
|
Zhang R, Han Y, McClements DJ, Xu D, Chen S. Production, Characterization, Delivery, and Cholesterol-Lowering Mechanism of Phytosterols: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2483-2494. [PMID: 35170307 DOI: 10.1021/acs.jafc.1c07390] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phytosterols are natural plant-based bioactive compounds that can lower blood cholesterol levels and help prevent cardiovascular diseases. Consequently, they are being utilized in functional foods, supplements, and pharmaceutical products designed to improve human health. This paper summarizes different approaches to isolate, purify, and characterize phytosterols. It also discusses the hypolipidemic mechanisms of phytosterols and their impact on cholesterol transportation. Phytosterols have a low water-solubility, poor chemical stability, and limited bioavailability, which limits their utilization and efficacy in functional foods. Strategies are therefore being developed to overcome these shortcomings. Colloidal delivery systems, such as emulsions, oleogels, liposomes, and nanoparticles, have been shown to be effective at improving the water-dispersibility, stability, and bioavailability of phytosterols. These delivery systems can be used to incorporate phytosterols into a broader range of cholesterol-lowering functional foods and beverages. We also discuses several issues that need to be addressed before these phytosterol delivery systems can find widespread commercial utilization.
Collapse
Affiliation(s)
- Ruyi Zhang
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Yahong Han
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Duoxia Xu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing 100048, China
| | - Shuai Chen
- School of Public Health, Wuhan University, Wuhan 430071, China
| |
Collapse
|
13
|
Ghan SY, Siow LF, Tan CP, Cheong KW, Thoo YY. Palm Olein Organogelation Using Mixtures of Soy Lecithin and Glyceryl Monostearate. Gels 2022; 8:gels8010030. [PMID: 35049565 PMCID: PMC8774482 DOI: 10.3390/gels8010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/16/2021] [Accepted: 01/01/2022] [Indexed: 12/02/2022] Open
Abstract
The present work investigated the interaction between soy lecithin (SL), glyceryl monostearate (GMS), and water in structuring palm olein (PO) to create an organogel having similar mechanical properties to commercial spread. Extreme vertices mixture design was used to optimize the composition of PO-based organogel. The resulting model showed a good fit to the predicted data with R2 ≥ 0.89. The optimum composition was 8% SL, 22% GMS, 28% water, and 42% PO (w/w) to produce a mean firmness of 1.91 N, spreadability of 15.28 N s−1, and oil binding capacity (OBC) of 83.83%. The OBC of optimized organogel was 10% higher than commercial spread product, and no significant difference was observed in the mechanical properties (p > 0.05). The microstructure, as well as the rheological and thermal properties of the optimized organogel were characterized. Fourier transform infrared analysis indicated that hydrogen bonding and van der Waals interactions were the key driving forces for organogelation. The mixture of SL and GMS favored the formation of β′ + β form crystals with a predominance of the β′ form. These results have important implications for the development of PO-based organogel as a potential fat replacer in the production of low-fat spread.
Collapse
Affiliation(s)
- Sheah Yee Ghan
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (S.Y.G.); (L.F.S.)
| | - Lee Fong Siow
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (S.Y.G.); (L.F.S.)
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Kok Whye Cheong
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Yin Yin Thoo
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (S.Y.G.); (L.F.S.)
- Monash Industry Palm Oil Research and Education Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence:
| |
Collapse
|
14
|
Selvasekaran P, Chidambaram R. Advances in formulation for the production of low-fat, fat-free, low-sugar, and sugar-free chocolates: An overview of the past decade. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Conty V, Theierl S, Flöter E. Improving the nutritional profile of culinary products: oleogel-based bouillon cubes. Food Funct 2021; 12:7185-7197. [PMID: 34169299 DOI: 10.1039/d1fo01589c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structured fat phases are the basis of many consumer relevant properties of fat-containing foods. To realise a nutritional improvement - less saturated, more unsaturated fatty acids - edible oleogels could be remedy. The feasibility of traditional fat phases structured by oleogel in culinary products has been evaluated in this study. In this contribution the oleogel application in bouillon cubes as model system for culinary products is discussed. Three different gelators (sunflower wax (SFW), a mixture of β-Sitosterol and γ-Oryzanol (SO) and ethylcellulose (EC)), at two concentration levels (5% and 10% (w/w)) each, were evaluated with respect to their physical properties, in the food matrix and application. The application of pure and structured canola oil (CO) was benchmarked against the reference, palm fat (PO). The assessment of the prototypes covered attempts to correlate the physicochemical analyses and sensory data. Organoleptic and analytical studies covered storage stability (up to 6 months) monitoring texture, color and fat oxidation. The results indicate that the substitution of palm fat by oleogel is essentially possible. The characteristics of the bouillon cubes are tuneable by gelator choice and inclusion level. Most importantly, the data show that the anticipated risk of intolerable effects of oxidation during shelf life is limited if antioxidants are used.
Collapse
Affiliation(s)
- Valentina Conty
- Department of Food Processing, Technical University Berlin, Seestraße 13, Berlin 13353, Germany.
| | | | | |
Collapse
|
16
|
Sun P, Xia B, Ni ZJ, Wang Y, Elam E, Thakur K, Ma YL, Wei ZJ. Characterization of functional chocolate formulated using oleogels derived from β-sitosterol with γ-oryzanol/lecithin/stearic acid. Food Chem 2021; 360:130017. [PMID: 33984566 DOI: 10.1016/j.foodchem.2021.130017] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022]
Abstract
With an aim to prepare the functional chocolate, corn oil was used as the base oil and β-sitosterol was combined with oryzanol/stearic acid/lecithin to prepare respective oleogels (GO, SO, and LO). Oleogels (12%) were prepared by adding compound oleogelators at different ratios [GO-2:3, SO-1:4, and LO-4:1 (w/w)] in corn oil. The microstructure, interaction, thermodynamic, crystalline, and rheological behavior of formulated oleogels were studied by microscopic observation, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and rotational rheometer, respectively. The results showed that GO had the strongest gel forming ability and the densest gel crystallization network. Moreover, chocolate prepared with GO (cocoa butter and oleogels-1:1) had the similar texture, crystal structure, rheological, and sensory properties to that of dark chocolate. This study provides the possibility for the wider application of oleogel prepared with lower saturated and trans-fatty acids in the chocolate industry.
Collapse
Affiliation(s)
- Ping Sun
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Bing Xia
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Zhi-Jing Ni
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Yue Wang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Elnur Elam
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Kiran Thakur
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, PR China.
| | - Yi-Long Ma
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, PR China.
| | - Zhao-Jun Wei
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, PR China.
| |
Collapse
|
17
|
Li L, Liu G, Lin Y. Physical and bloom stability of low-saturation chocolates with oleogels based on different gelation mechanisms. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110807] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Suri T, Basu S. Heat resistant chocolate development for subtropical and tropical climates: a review. Crit Rev Food Sci Nutr 2021; 62:5603-5622. [PMID: 33635177 DOI: 10.1080/10408398.2021.1888690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Heat resistant chocolate (HRC) which can retain the desired texture and mouthfeel in tropical and subtropical climatic conditions has become a major research area in the chocolate industry. Liking of the chocolate products keeps on changing with the geographical conditions of the world due to the availability of ingredients from local resources and consumer's taste preferences. The geographical changes also bring about the change in climatic conditions and as such no chocolates have been formulated to withstand the hot tropical or sub-tropical temperature conditions. Textural issues and various storage related problems faced due to meltability of chocolate in different countries has opened up a broad research field of sustainable HRC manufacturing. Over the years, there are broadly three different approaches (fat modification, sugar structure modification and innovative process approach) to develop the HRC and all these scientific approaches have given different scientific insights about improving the heat resistance characteristics and textural stability of chocolate. There is a lack or coordinated fundamental and applied research related to cocoa butter polymorphism, and thermal-textural issues during product development/storage. This review paper is an attempt to describe the different scientific approaches for developing HRC and how they affect the physical/sensory chocolate attributes.
Collapse
Affiliation(s)
- Twinkle Suri
- Dr. SS Bhatnagar University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Santanu Basu
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
19
|
Magri A, Petriccione M, Cerqueira MA, Gutiérrez TJ. Self-assembled lipids for food applications: A review. Adv Colloid Interface Sci 2020; 285:102279. [PMID: 33070103 DOI: 10.1016/j.cis.2020.102279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Lipids play an important role in human nutrition. Several foodstuffs can be manufactured from the simple, compound and derived lipids. In particular, the use of self-assembled lipids (SLs, e.g. self-assembled L-α-lecithin) has brought great attention for the development of tailored, tuned and targeted colloidal structures loading degradation-sensitive substances with valuable antimicrobial, antioxidant and nutraceutical properties for food applications. For example, polyunsaturated fatty acids (PUFAs) and essential oils can be protected from degradation, thus improving their bioavailability in general terms in consumers. From a nanotechnological point of view, SLs allow the development of advanced and multifaceted architectures, in which each molecule of them are used as building blocks to obtain designed and ordered structures. It is important to note before beginning this review, that simple and compound lipids are the main SLs, while essential fatty acids and derived lipids in general have been considered by many research groups as the bulk loaded substances within several structures from self-assembled carbohydrates, proteins and lipids. However, this review paper is addressed on the analysis of the lipid-lipid self-assembly. Lipids can be self-assembled into various structures (micelles, vesicular systems, lyotropic liquid crystals, oleogels and films) to be used in different food applications: coatings, controlled and sustained release materials, emulsions, functional foods, etc. SLs can be obtained via non-covalent chemical interactions, primarily by hydrogen, hydrophilic and ionic bonding, which are influenced by the conditions of ionic strength, pH, temperature, among others. This manuscript aims to give an analysis of the specific state-of-the-art of SLs for food applications, based primarily on the literature reported in the past five years.
Collapse
|
20
|
Scharfe M, Flöter E. Oleogelation: From Scientific Feasibility to Applicability in Food Products. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.202000213] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Maria Scharfe
- Department of Food Processing Technical University Berlin Seestr. 13 Berlin 13353 Germany
| | - Eckhard Flöter
- Department of Food Processing Technical University Berlin Seestr. 13 Berlin 13353 Germany
| |
Collapse
|
21
|
Park C, Maleky F. A Critical Review of the Last 10 Years of Oleogels in Food. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00139] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Pakseresht S, Mazaheri Tehrani M. Advances in Multi-component Supramolecular Oleogels- a Review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1742153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Somaye Pakseresht
- Department of Food Science and Technology, Ferdowsi University of Mashhad (FUM), Mashhad, Korasan Razavi, Iran
| | - Mostafa Mazaheri Tehrani
- Research Chair, Department of Food Science and Technology, Ferdowsi University of Mashhad (FUM), Mashhad, Korasan Razavi, Iran
| |
Collapse
|
23
|
Pușcaș A, Mureșan V, Socaciu C, Muste S. Oleogels in Food: A Review of Current and Potential Applications. Foods 2020; 9:E70. [PMID: 31936353 PMCID: PMC7022307 DOI: 10.3390/foods9010070] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
Legislative limitations of the use of trans and saturated fatty acids, the rising concerns among consumers about the negative effects of some fats on human health, and environmental and health considerations regarding the increased use of palm fat in food and biodiesel production drove to innovations in reformulating fat-containing food products. Oleogelation is one of the most in-trend methods for reducing or replacing the unhealthy and controversial fats in food products. Different edible oleogels are being formulated by various techniques and used in spreads, bakeries, confectioneries, and dairy and meat products. This review exclusively focuses on up-to-date applications of oleogels in food and mechanisms of gelation, and discusses the properties of new products. Research has produced acceptable reformulated food products with similar technological and rheological properties as the reference products or even products with improved techno-functionality; however, there is still a high need to improve oleogelation methods, as well as the technological process of oleogel-based foods products. Despite other strategies that aim to reduce or replace the occurrence of trans and saturated fats in food, oleogelation presents a great potential for industrial application in the future due to nutritional and environmental considerations.
Collapse
Affiliation(s)
- Andreea Pușcaș
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.P.); (S.M.)
| | - Vlad Mureșan
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.P.); (S.M.)
| | - Carmen Socaciu
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Sevastița Muste
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.P.); (S.M.)
| |
Collapse
|
24
|
Martins AJ, Cerqueira MA, Pastrana LM, Cunha RL, Vicente AA. Sterol-based oleogels' characterization envisioning food applications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3318-3325. [PMID: 30569530 DOI: 10.1002/jsfa.9546] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/24/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Phytosterols, in particular a mixture of pure γ-oryzanol and β-sitosterol, develop a tubular system that is able to structure oil. In this study, different concentrations of a combination of γ-oryzanol and a commercial phytosterol mixture, Vitaesterol®, were used for the development of edible oil oleogels. RESULTS Small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD) were used to characterize at nano and molecular scale the aforementioned oleogels and confirm the formation of sterols-based hollow tubule structures. Increased hardness was observed with the increase of gelator content used in oleogel manufacturing. The produced oleogels showed promising features such as tailored mechanical strength and low opacity, which are important features when considering their incorporation into food products. CONCLUSION Despite differences in gel strength, oleogels exhibited textural characteristics that make these structures suitable for incorporation in food products. The oil migration profile associated with these oleogels can provide a solution for the controlled release of lipophilic compounds as well as for the retention of oil in cooked food products. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Artur J Martins
- CEB, Centre of Biological Engineering, University of Minho, Braga, Portugal
- Department of Life Sciences, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Miguel A Cerqueira
- Department of Life Sciences, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Lorenzo M Pastrana
- Department of Life Sciences, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Rosiane L Cunha
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, UNICAMP, Campinas, Brazil
| | - António A Vicente
- CEB, Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|