1
|
Calarnou L, Vigouroux E, Thollas B, Le Grand F, Mounier J. Screening for the production of polyunsaturated fatty acids and cerebrosides in fungi. J Appl Microbiol 2024; 135:lxae030. [PMID: 38323436 DOI: 10.1093/jambio/lxae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/08/2024]
Abstract
AIMS To investigate fatty acid, including polyunsaturated fatty acids (PUFA), and cerebroside production of a large diversity of fungi from the Ascomycota, Basidiomycota, and Mucoromycota phyla. METHODS AND RESULTS Seventy-nine fungal strains were grown in Kavadia medium using a microcultivation system, i.e. Duetz microtiter plates. Following cultivation, fatty acid and cerebroside contents were analyzed by gas chromatography-flame ionization detection (GC-FID) and high performance thin-layer chromatography (HPTLC), respectively. Mucoromycota fungi appeared as the most promising candidates for omega-6 PUFA production. The best omega-6 producer, including γ-linolenic acid (GLA, 18:3n-6), was Mucor fragilis UBOCC-A109196 with a concentration of 647 mg L-1 total omega-6 PUFA (representing 35% of total fatty acids) and 225 mg L-1 GLA (representing 12% of total fatty acids). Arachidonic acid concentration (20:4n-6) was the highest in Mortierella alpina UBOCC-A-112046, reaching 255 mg L-1 and 18.56% of total fatty acids. Interestingly, several fungal strains were shown to produce omega-7 monounsaturated fatty acids. Indeed, Torulaspora delbrueckii strains accumulated palmitoleic acid (16:1n-7) up to 20% of total fatty acids, reaching 114 mg L-1 in T. delbrueckii UBOCC-A-214128, while C. elegans UBOCC-A-102008 produced mainly paullinic acid (20:1n-7) with concentrations up to 100 mg L-1. Concerning cerebroside production, HPTLC appeared as a relevant approach for their detection and quantification. Promising candidates belonging to the Mucoromycota phylum were found, especially in the Absidia genus with A. spinosa UBOCC-A-101332 as the best producer (12.7 mg L-1). CONCLUSIONS The present study highlighted PUFA and cerebroside production in a large diversity of fungi and the fact that members of the Mucoromycota phylum are good producers of PUFA as well as cerebrosides.
Collapse
Affiliation(s)
- Laurie Calarnou
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Estelle Vigouroux
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France
| | - Bertrand Thollas
- Polymaris Biotechnology, 160 rue Pierre Rivoalon, 29200 Brest, France
| | | | - Jérôme Mounier
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France
| |
Collapse
|
2
|
Affiliation(s)
- J. D. Weete
- Department of Botany & Microbiology, Alabama Agricultural Experiment Station, Auburn University, Alabama 36849 USA
| | - S. R. Gandhi
- Department of Botany & Microbiology, Alabama Agricultural Experiment Station, Auburn University, Alabama 36849 USA
| |
Collapse
|
3
|
Kosa G, Zimmermann B, Kohler A, Ekeberg D, Afseth NK, Mounier J, Shapaval V. High-throughput screening of Mucoromycota fungi for production of low- and high-value lipids. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:66. [PMID: 29563969 PMCID: PMC5851148 DOI: 10.1186/s13068-018-1070-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 03/07/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND Mucoromycota fungi are important producers of low- and high-value lipids. Mortierella alpina is used for arachidonic acid production at industrial scale. In addition, oleaginous Mucoromycota fungi are promising candidates for biodiesel production. A critical step in the development of such biotechnological applications is the selection of suitable strains for lipid production. The aim of the present study was to use the Duetz-microtiter plate system combined with Fourier transform infrared (FTIR) spectroscopy for high-throughput screening of the potential of 100 Mucoromycota strains to produce low- and high-value lipids. RESULTS With this reproducible, high-throughput method, we found several promising strains for high-value omega-6 polyunsaturated fatty acid (PUFA) and biodiesel production purposes. Gamma-linolenic acid content was the highest in Mucor fragilis UBOCC-A-109196 (24.5% of total fatty acids), and Cunninghamella echinulata VKM F-470 (24.0%). For the first time, we observed concomitant gamma-linolenic acid and alpha-linolenic acid (up to 13.0%) production in psychrophilic Mucor flavus strains. Arachidonic acid was present the highest amount in M. alpina ATCC 32222 (41.1% of total fatty acids). Low cultivation temperature (15 °C) activated the temperature sensitive ∆17 desaturase enzyme in Mortierella spp., resulting in eicosapentaenoic acid production with up to 11.0% of total fatty acids in M. humilis VKM F-1494. Cunninghamella blakesleeana CCM-705, Umbelopsis vinacea CCM F-539 and UBOCC-A-101347 showed very good growth (23-26 g/L) and lipid production (7.0-8.3 g/L) with high palmitic and oleic acid, and low PUFA content, which makes them attractive candidates for biodiesel production. Absidia glauca CCM 451 had the highest total lipid content (47.2% of biomass) of all tested strains. We also demonstrated the potential of FTIR spectroscopy for high-throughput screening of total lipid content of oleaginous fungi. CONCLUSIONS The use of Duetz-microtiter plate system combined with FTIR spectroscopy and multivariate analysis, is a feasible approach for high-throughput screening of lipid production in Mucoromycota fungi. Several promising strains have been identified by this method for the production of high-value PUFA and biodiesel.
Collapse
Affiliation(s)
- Gergely Kosa
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Dag Ekeberg
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | | | - Jerome Mounier
- Université de Brest, EA3882 Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest Iroise, 29280 Plouzané, France
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| |
Collapse
|
4
|
Kosa G, Kohler A, Tafintseva V, Zimmermann B, Forfang K, Afseth NK, Tzimorotas D, Vuoristo KS, Horn SJ, Mounier J, Shapaval V. Microtiter plate cultivation of oleaginous fungi and monitoring of lipogenesis by high-throughput FTIR spectroscopy. Microb Cell Fact 2017; 16:101. [PMID: 28599651 PMCID: PMC5466753 DOI: 10.1186/s12934-017-0716-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/05/2017] [Indexed: 02/06/2023] Open
Abstract
Background Oleaginous fungi can accumulate lipids by utilizing a wide range of waste substrates. They are an important source for the industrial production of omega-6 polyunsaturated fatty acids (gamma-linolenic and arachidonic acid) and have been suggested as an alternative route for biodiesel production. Initial research steps for various applications include the screening of fungi in order to find efficient fungal producers with desired fatty acid composition. Traditional cultivation methods (shake flask) and lipid analysis (extraction-gas chromatography) are not applicable for large-scale screening due to their low throughput and time-consuming analysis. Here we present a microcultivation system combined with high-throughput Fourier transform infrared (FTIR) spectroscopy for efficient screening of oleaginous fungi. Results The microcultivation system enables highly reproducible fungal fermentations throughout 12 days of cultivation. Reproducibility was validated by FTIR and HPLC data. Analysis of FTIR spectral ester carbonyl peaks of fungal biomass offered a reliable high-throughput at-line method to monitor lipid accumulation. Partial least square regression between gas chromatography fatty acid data and corresponding FTIR spectral data was used to set up calibration models for the prediction of saturated fatty acids, monounsaturated fatty acids, polyunsaturated fatty acids, unsaturation index, total lipid content and main individual fatty acids. High coefficients of determination (R2 = 0.86–0.96) and satisfactory residual predictive deviation of cross-validation (RPDCV = 2.6–5.1) values demonstrated the goodness of these models. Conclusions We have demonstrated in this study, that the presented microcultivation system combined with rapid, high-throughput FTIR spectroscopy is a suitable screening platform for oleaginous fungi. Sample preparation for FTIR measurements can be automated to further increase throughput of the system. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0716-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gergely Kosa
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway.
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Valeria Tafintseva
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Kristin Forfang
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | | | | | - Kiira S Vuoristo
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Svein Jarle Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Jerome Mounier
- Université de Brest, EA3882 Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest Iroise, 29280, Plouzané, France
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| |
Collapse
|
5
|
Optimization of Physiological Growth Conditions for Maximal Gamma-linolenic Acid Production by Cunninghamella blakesleeana-JSK2. J AM OIL CHEM SOC 2014. [DOI: 10.1007/s11746-014-2507-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Sukrutha SK, Janakiraman S. Harnessing indigenous plant seed oil for the production of bio-fuel by an oleaginous fungus, Cunninghamella blakesleeana- JSK2, isolated from tropical soil. Appl Biochem Biotechnol 2013; 172:1027-35. [PMID: 24142351 DOI: 10.1007/s12010-013-0531-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/15/2013] [Indexed: 11/30/2022]
Abstract
Cunninghamella blakesleeana- JSK2, a gamma-linolenic acid (GLA) producing tropical fungal isolate, was utilized as a tool to evaluate the influence of various plant seed oils on biomass, oleagenicity and bio-fuel production. The fungus accumulated 26 % total lipid of their dry biomass (2 g/l) and 13 % of GLA in its total fatty acid. Among the various plant seed oils tested as carbon sources for biotransformation studies, watermelon oil had an effect on biomass and total lipid increasing up to 9.24 g/l and 34 % respectively. Sunflower, pumpkin, and onion oil increased GLA content between 15-18 %. Interestingly, an indigenous biodiesel commodity, Pongamia pinnata oil showed tremendous effect on fatty acid profile in C. blakesleeana- JSK2, when used as a sole source of carbon. There was complete inhibition of GLA from 13 to 0 % and increase in oleic acid content, one of the key components of biodiesel to 70 % (from 20 % in control). Our results suggest the potential application of indigenous plant seed oils, particularly P. pinnata oil, for the production of economically valuable bio-fuel in oleaginous fungi in general, and C. blakesleeana- JSK2, in particular.
Collapse
Affiliation(s)
- S K Sukrutha
- Department of Microbiology and Biotechnology, Jnana Bharathi Campus, Bangalore University, Bangalore, 560056,, Karnataka, India,
| | | |
Collapse
|
7
|
Fakas S, Papanikolaou S, Galiotou-Panayotou M, Komaitis M, Aggelis G. Lipids of Cunninghamella echinulata with emphasis to γ-linolenic acid distribution among lipid classes. Appl Microbiol Biotechnol 2006; 73:676-83. [PMID: 16850299 DOI: 10.1007/s00253-006-0506-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 05/09/2006] [Accepted: 05/15/2006] [Indexed: 11/26/2022]
Abstract
Changes in lipid composition of the oleaginous fungus Cunninghamella echinulata were monitored during growth. Lipid fractions and individual lipid classes varied in amount, relative proportions, and fatty acid profile depending on the developmental stage. Neutral lipids (N), comprised mainly of triacylglycerol, were accumulated in the fungal mycelium during both the late exponential and the stationary growth phases with a concomitant decrease in the amount of polar lipids. While fatty acid composition of N fraction remained almost constant, individual N classes showed a noticeable alteration in gamma-linolenic acid (GLA) concentration. The glycolipid plus sphingolipid (G+S) fraction consisted mainly of monoglycosylglycerol and diglycosylglycerol. The sugar composition of G+S fraction was analyzed and showed a partial replacement of galactose for glucose as growth proceeded. Phospholipid (P) major classes were phosphatidylcholine (PC) and phosphatidylethanolamine, followed by phosphatidylinositol, phosphatidylserine, and diphosphatidylglycerol. P fatty acid composition showed significant changes with time, resulting in a considerable drop in the unsaturation index of this fraction. While in mid exponential growth phase, all P classes contained more than 20% w/w GLA of total fatty acids, and their concentration decreased to 12-17% w/w, except for the PC class where GLA concentration remained at high levels (e.g., more than 20% w/w). The constant level of GLA in PC at all growth phases suggests that PC was the major source of GLA. Sterol analysis showed that their concentration increased during growth, whereas ergosterol was the major component.
Collapse
Affiliation(s)
- Stylianos Fakas
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855,Athens, Greece
| | | | | | | | | |
Collapse
|
8
|
|
9
|
Sahasrabudhe NA, Sankpal NV. Production of organic acids and metabolites of fungi for food industry. AGRICULTURE AND FOOD PRODUCTION 2001. [DOI: 10.1016/s1874-5334(01)80016-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|