1
|
Yılmaz S, Idris AB, Ayvaz A, Temizgül R, Çetin A, Hassan MA. Genome mining of Bacillus thuringiensis strain SY49.1 reveals novel candidate pesticidal and bioactive compounds. PEST MANAGEMENT SCIENCE 2025; 81:298-307. [PMID: 39324581 PMCID: PMC11632210 DOI: 10.1002/ps.8433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Bacillus thuringiensis SY49.1 (Bt SY49.1) strain has promising insecticidal and fungicidal activity against phytopathogens and pests. Therefore, we selected this strain for whole-genome sequencing (WGS), annotation and analysis, with the aim of identifying genes responsible for producing putative pesticidal toxins, antimicrobial metabolites and plant growth-promoting features. RESULTS Our results showed that the SY49.1 genome is 6. 32 Mbp long with a GC content of 34.68%. Genome mining revealed the presence of multiple gene inventories for the biosynthesis of bioactive compounds such as insecticidal delta endotoxins, secondary metabolites, and several plant growth-promoting proteins. Multiple sequence alignment revealed residue variations in the toxic core of Cry1Ab when compared with known Cry1Ab sequences from Bt nomenclature databases. This suggests that the cry1Ab of SY49.1 is a new kind of its group. Among the predicted secondary metabolites, we found a kurstakin with a predicted peptide that differs from the known kurstakin peptide available in the NORINE database. In addition, lipopeptides extracted from SY49.1 suppressed the growth of Verticillium dahliae and Fusarium oxysporum. CONCLUSION We anticipate that the complete genome of Bt SY49.1 may provide a model for properly understanding and studying antimicrobial compound mining, genetic diversity among the B. cereus group, and pathogenicity against insects. This is the first report on the WGS and mining of the Bt strain isolated from Turkey. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Semih Yılmaz
- Department of Agricultural Biotechnology, Faculty of AgricultureErciyes UniversityKayseriTurkey
| | - Abeer Babiker Idris
- Department of Agricultural Sciences and Technologies, Graduate School of Natural and Applied SciencesErciyes UniversityKayseriTurkey
| | - Abdurrahman Ayvaz
- Department of Biology, Faculty of ScienceErciyes UniversityKayseriTurkey
| | - Rıdvan Temizgül
- Department of Biology, Faculty of ScienceErciyes UniversityKayseriTurkey
| | - Aysun Çetin
- Department of Medical Biochemistry, Faculty of MedicineErciyes UniversityKayseriTurkey
| | - Mohammed A Hassan
- Department of BioinformaticsAfrica City of TechnologyKhartoumSudan
- Sanimed international lab and management l.l.CAbu DhabiUAE
| |
Collapse
|
2
|
Salehi Jouzani G, Sharafi R, Argentel-Martínez L, Peñuelas-Rubio O, Ozkan C, Incegul B, Goksu R, Hayta Z, Yilki D, Yazici B, Hancer V, Sansinenea E, Shin JH, El-Shabasy A, Azizoglu U. Novel insights into Bacillus thuringiensis: Beyond its role as a bioinsecticide. Res Microbiol 2024:104264. [PMID: 39675400 DOI: 10.1016/j.resmic.2024.104264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
This review explores the diverse applications of Bacillus thuringiensis (Bt) beyond its traditional role as a bioinsecticide. Bt produces a variety of compounds with distinct chemical structures and biological activities. These include antimicrobial agents effective against plant pathogens and bioactive compounds that promote plant growth through the production of siderophores, hormones, and enzymes. Additionally, Bt's industrial potential is highlighted, encompassing biofuel production, bioplastics, nanoparticle synthesis, food preservation, anticancer therapies, and heavy metal bioremediation. This critical analysis emphasizes recent advancements and applications, providing insights into Bt's role in sustainable agriculture, biotechnology, and environmental management.
Collapse
Affiliation(s)
- Gholamreza Salehi Jouzani
- Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Reza Sharafi
- National Center for Genetic Resources of Agriculture and Natural Resources, Agricultural Research, Education and Extension Organization (AREEO), Fahmideh Blvd, Karaj, Iran
| | - Leandris Argentel-Martínez
- Department of Engineering, National Technological Institute of Mexico/Technological Institute of Yaqui Valley, Bacum, Sonora, Mexico
| | - Ofelda Peñuelas-Rubio
- Department of Engineering, National Technological Institute of Mexico/Technological Institute of Yaqui Valley, Bacum, Sonora, Mexico
| | - Ceyda Ozkan
- Faculty of Life and Natural Sciences, Molecular Biology and Genetics Department, Abdullah Gul University, Kayseri, Turkiye
| | - Bengisu Incegul
- Faculty of Life and Natural Sciences, Molecular Biology and Genetics Department, Abdullah Gul University, Kayseri, Turkiye
| | - Rana Goksu
- Faculty of Life and Natural Sciences, Molecular Biology and Genetics Department, Abdullah Gul University, Kayseri, Turkiye
| | - Zehra Hayta
- Faculty of Life and Natural Sciences, Molecular Biology and Genetics Department, Abdullah Gul University, Kayseri, Turkiye
| | - Deniz Yilki
- Faculty of Life and Natural Sciences, Molecular Biology and Genetics Department, Abdullah Gul University, Kayseri, Turkiye
| | - Beyza Yazici
- Faculty of Life and Natural Sciences, Molecular Biology and Genetics Department, Abdullah Gul University, Kayseri, Turkiye
| | - Vildan Hancer
- Faculty of Life and Natural Sciences, Molecular Biology and Genetics Department, Abdullah Gul University, Kayseri, Turkiye
| | - Estibaliz Sansinenea
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla. C.P. 72570. Puebla, Pue. Mexico
| | - Jae-Ho Shin
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - A El-Shabasy
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
| | - Ugur Azizoglu
- Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Türkiye; Genome and Stem Cell Research Center, Erciyes University, Kayseri, Türkiye.
| |
Collapse
|
3
|
Hnamte L, Vanlallawmzuali, Kumar A, Yadav MK, Zothanpuia, Singh PK. An updated view of bacterial endophytes as antimicrobial agents against plant and human pathogens. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100241. [PMID: 39091295 PMCID: PMC11292266 DOI: 10.1016/j.crmicr.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Bacterial endophytes are a crucial component of the phytomicrobiome, playing an essential role in agriculture and industries. Endophytes are a rich source of bioactive compounds, serving as natural antibiotics that can be effective in combating antibiotic resistance in pathogens. These bacteria interact with host plants through various processes such as quorum sensing, chemotaxis, antibiosis, and enzymatic activity. The current paper focuses on how plants benefit extensively from endophytic bacteria and their symbiotic relationship in which the microbes enhance plant growth, nitrogen fixation, increase nutrient uptake, improve defense mechanisms, and act as antimicrobial agents against pathogens. Moreover, it highlights some of the bioactive compounds produced by endophytes.
Collapse
Affiliation(s)
- Lalhmangaihmawia Hnamte
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Vanlallawmzuali
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Ajay Kumar
- Amity institute of Biotechnology, Amity University, Noida-201313, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Zothanpuia
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Prashant Kumar Singh
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| |
Collapse
|
4
|
Dobrzyński J, Jakubowska Z, Kulkova I, Kowalczyk P, Kramkowski K. Biocontrol of fungal phytopathogens by Bacillus pumilus. Front Microbiol 2023; 14:1194606. [PMID: 37560520 PMCID: PMC10407110 DOI: 10.3389/fmicb.2023.1194606] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023] Open
Abstract
Plant growth-promoting bacteria are one of the most interesting methods of controlling fungal phytopathogens. These bacteria can participate in biocontrol via a variety of mechanisms including lipopeptide production, hydrolytic enzymes (e.g., chitinase, cellulases, glucanase) production, microbial volatile organic compounds (mVOCs) production, and induced systemic resistance (ISR) triggering. Among the bacterial genera most frequently studied in this aspect are Bacillus spp. including Bacillus pumilus. Due to the range of biocontrol traits, B. pumilus is one of the most interesting members of Bacillus spp. that can be used in the biocontrol of fungal phytopathogens. So far, a number of B. pumilus strains that exhibit biocontrol properties against fungal phytopathogens have been described, e.g., B. pumilus HR10, PTB180, B. pumilus SS-10.7, B. pumilus MCB-7, B. pumilus INR7, B. pumilus SE52, SE34, SE49, B. pumilus RST25, B. pumilus JK-SX001, and B. pumilus KUDC1732. B. pumilus strains are capable of suppressing phytopathogens such as Arthrobotrys conoides, Fusarium solani, Fusarium oxysporum, Sclerotinia sclerotiorum, Rhizoctonia solani, and Fagopyrum esculentum. Importantly, B. pumilus can promote plant growth regardless of whether it alters the native microbiota or not. However, in order to increase its efficacy, research is still needed to clarify the relationship between the native microbiota and B. pumilus. Despite that, it can already be concluded that B. pumilus strains are good candidates to be environmentally friendly and commercially effective biocontrol agents.
Collapse
Affiliation(s)
- Jakub Dobrzyński
- Institute of Technology and Life Sciences—National Research Institute, Raszyn, Poland
| | - Zuzanna Jakubowska
- Institute of Technology and Life Sciences—National Research Institute, Raszyn, Poland
| | - Iryna Kulkova
- Institute of Technology and Life Sciences—National Research Institute, Raszyn, Poland
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
5
|
Yakkou L, Houida S, Bilen S, Kaya LO, Raouane M, Amghar S, Harti AE. Earthworm Aporrectodea molleri (oligochaeta)'s coelomic fluid-associated bacteria modify soil biochemical properties and improve maize (Zea mays L.) plant growth under abiotic stress conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11719-11739. [PMID: 36098926 DOI: 10.1007/s11356-022-22999-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
This study evaluated the impact of Aporrectodea molleri's coelomic fluid-associated bacteria (CFB) on Zea mays L. growth and soil biochemical characteristics under abiotic stress conditions, including alkaline soil (pH = 8) and nitrogen (N), phosphate (P), and potassium (K) deficit. Compared to maize cultivated in uninoculated soil, the effect of CFB on boosting plant growth under abiotic stress was notably exceptional. Different CFB treatments increased significantly root and shoot length by 50% and 21%, respectively. Furthermore, the presence of isolates in soil resulted in a significant increase in plant fresh and dry weights (of up to 113% and 91% for roots, and up to 173% and 44% for shoots), leaf surface (78%), and steam diameter (107%). Overall, soil inoculation with CFB significantly (P < 0.05) enhanced chlorophyll and water content in the plant compared to the untreated soil. Despite the soil's alkaline condition, CFB drastically boosted soil quality by increasing nutrient availability (up to 30 ppm for N, 2 ppm for P, and 60 ppm for K) and enzyme activity (up to 1.14 μg p-NP h-1 g-1 for acide phosphatase, 9 μg p-NP h-1 g-1 for alkaline phosphatase and 40 μg NH4-N 2 h-1 g-1 for urease), throughout the early stages of the growth period. Interestingly, alkaline phosphatase concentrations were substantially greater in treatments with different isolates than acid phosphatase. Furthermore, the principal component analysis showed that the inoculation with bacteria strains CFB1 Buttiauxella gaviniae and CFB3 Aeromonas hydrophila had a significantly better stimulatory stimulatory and direct influence on maize growth than the other isolates had a substantial effect on soil's biochemical features. Thus, we assumed that the beneficial contribution of earthworms in the rhizosphere might be attributed in large part to associated microorganisms.
Collapse
Affiliation(s)
- Lamia Yakkou
- Reseach Team "Lombricidae, Improving Soil Productivity and Environment" (LAPSE), Centre "Eau, Ressources Naturelles, Environnement et Développement Durable" (CERNE2D), Ecole Normale Supérieure (ENS), Mohammed V University in Rabat, Avenue Med Belhassan El Ouazani, BP5118, Takaddoum-Rabat, Morocco.
- Soil Science and Plant Nutrition Department, Faculty of Agriculture, Ataturk University, 25000, Erzurum, Turkey.
| | - Sofia Houida
- Reseach Team "Lombricidae, Improving Soil Productivity and Environment" (LAPSE), Centre "Eau, Ressources Naturelles, Environnement et Développement Durable" (CERNE2D), Ecole Normale Supérieure (ENS), Mohammed V University in Rabat, Avenue Med Belhassan El Ouazani, BP5118, Takaddoum-Rabat, Morocco
- Soil Science and Plant Nutrition Department, Faculty of Agriculture, Ataturk University, 25000, Erzurum, Turkey
| | - Serdar Bilen
- Soil Science and Plant Nutrition Department, Faculty of Agriculture, Ataturk University, 25000, Erzurum, Turkey
| | - Leyla Okyay Kaya
- Soil Science and Plant Nutrition Department, Faculty of Agriculture, Ataturk University, 25000, Erzurum, Turkey
| | - Mohammed Raouane
- Reseach Team "Lombricidae, Improving Soil Productivity and Environment" (LAPSE), Centre "Eau, Ressources Naturelles, Environnement et Développement Durable" (CERNE2D), Ecole Normale Supérieure (ENS), Mohammed V University in Rabat, Avenue Med Belhassan El Ouazani, BP5118, Takaddoum-Rabat, Morocco
| | - Souad Amghar
- Reseach Team "Lombricidae, Improving Soil Productivity and Environment" (LAPSE), Centre "Eau, Ressources Naturelles, Environnement et Développement Durable" (CERNE2D), Ecole Normale Supérieure (ENS), Mohammed V University in Rabat, Avenue Med Belhassan El Ouazani, BP5118, Takaddoum-Rabat, Morocco
| | - Abdellatif El Harti
- Reseach Team "Lombricidae, Improving Soil Productivity and Environment" (LAPSE), Centre "Eau, Ressources Naturelles, Environnement et Développement Durable" (CERNE2D), Ecole Normale Supérieure (ENS), Mohammed V University in Rabat, Avenue Med Belhassan El Ouazani, BP5118, Takaddoum-Rabat, Morocco
| |
Collapse
|
6
|
Muthu Narayanan M, Ahmad N, Shivanand P, Metali F. The Role of Endophytes in Combating Fungal- and Bacterial-Induced Stress in Plants. Molecules 2022; 27:6549. [PMID: 36235086 PMCID: PMC9571366 DOI: 10.3390/molecules27196549] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Plants are subjected to multifaceted stresses that significantly jeopardize crop production. Pathogenic microbes influence biotic stress in plants, which ultimately causes annual crop loss worldwide. Although the use of pesticides and fungicides can curb the proliferation of pathogens in plants and enhance crop production, they pollute the environment and cause several health issues in humans and animals. Hence, there is a need for alternative biocontrol agents that offer an eco-friendly mode of controlling plant diseases. This review discusses fungal- and bacterial-induced stress in plants, which causes various plant diseases, and the role of biocontrol defense mechanisms, for example, the production of hydrolytic enzymes, secondary metabolites, and siderophores by stress-tolerant fungi and bacteria to combat plant pathogens. It is observed that beneficial endophytes could sustain crop production and resolve the issues regarding crop yield caused by bacterial and fungal pathogens. The collated literature review indicates that future research is necessary to identify potential biocontrol agents that can minimize the utility of synthetic pesticides and increase the tenable agricultural production.
Collapse
Affiliation(s)
| | | | - Pooja Shivanand
- Environmental and Life Sciences Program, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan BE1410, Brunei
| | | |
Collapse
|