1
|
Gerlicz W, Sypka M, Jodłowska I, Białkowska AM. Isolation, Selection, and Identification of Keratinolytic Bacteria for Green Management of Keratin Waste. Molecules 2024; 29:3380. [PMID: 39064958 PMCID: PMC11280386 DOI: 10.3390/molecules29143380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The volume of difficult-to-process keratin waste is increasing as a result of rising global meat production. If not properly managed, this waste can contribute to environmental pollution and pose a threat to human and animal welfare. An interesting and more sustainable alternative is therefore the bioconversion of keratin using microorganisms and their enzymes. This work aimed to isolate bacteria from soil samples and zoonotic keratins and to evaluate their enzymatic capacity to degrade α- and β-keratin wastes. A total of 113 bacterial strains were isolated from environmental samples and subjected to taxonomic identification using the MALDI-TOF MS technique and to a two-step screening for proteolytic and keratinolytic activity. The ability to degrade a β-rich keratin substrate was observed in almost all of the strains isolated from soil and horsehairs. In contrast, when an α-rich keratin substrate was used, the highest levels of hydrolysis were observed only for Ker39, Ker66, Ker85, Ker100, and Ker101. Strains with the highest biodegradation potential were identified using molecular biology methods. Phylogenetic analysis of 16S rDNA gene sequences allowed the assignment of selected keratinolytic microorganisms to the genera Exiguobacterium, Priestia, Curtobacterium, Stenotrophomonas, Bacillus, Kocuria, or Pseudomonas. The results of this study are a promising precursor for the development of new, more sustainable methods of managing keratin waste to produce high-value hydrolysates.
Collapse
Affiliation(s)
| | | | | | - Aneta M. Białkowska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland; (W.G.); (M.S.); (I.J.)
| |
Collapse
|
2
|
Halema AA, El-Beltagi HS, Al-Dossary O, Alsubaie B, Henawy AR, Rezk AA, Almutairi HH, Mohamed AA, Elarabi NI, Abdelhadi AA. Omics technology draws a comprehensive heavy metal resistance strategy in bacteria. World J Microbiol Biotechnol 2024; 40:193. [PMID: 38709343 DOI: 10.1007/s11274-024-04005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
The rapid industrial revolution significantly increased heavy metal pollution, becoming a major global environmental concern. This pollution is considered as one of the most harmful and toxic threats to all environmental components (air, soil, water, animals, and plants until reaching to human). Therefore, scientists try to find a promising and eco-friendly technique to solve this problem i.e., bacterial bioremediation. Various heavy metal resistance mechanisms were reported. Omics technologies can significantly improve our understanding of heavy metal resistant bacteria and their communities. They are a potent tool for investigating the adaptation processes of microbes in severe conditions. These omics methods provide unique benefits for investigating metabolic alterations, microbial diversity, and mechanisms of resistance of individual strains or communities to harsh conditions. Starting with genome sequencing which provides us with complete and comprehensive insight into the resistance mechanism of heavy metal resistant bacteria. Moreover, genome sequencing facilitates the opportunities to identify specific metal resistance genes, operons, and regulatory elements in the genomes of individual bacteria, understand the genetic mechanisms and variations responsible for heavy metal resistance within and between bacterial species in addition to the transcriptome, proteome that obtain the real expressed genes. Moreover, at the community level, metagenome, meta transcriptome and meta proteome participate in understanding the microbial interactive network potentially novel metabolic pathways, enzymes and gene species can all be found using these methods. This review presents the state of the art and anticipated developments in the use of omics technologies in the investigation of microbes used for heavy metal bioremediation.
Collapse
Affiliation(s)
- Asmaa A Halema
- Genetics Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Hossam S El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| | - Othman Al-Dossary
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Bader Alsubaie
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Ahmed R Henawy
- Microbiology Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Adel A Rezk
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Plant Virology Department, Plant Pathology Research Institute, Agriculture Research Center, Giza, 12619, Egypt
| | - Hayfa Habes Almutairi
- Chemistry Department, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Amal A Mohamed
- Chemistry Dept, Al-Leith University College, Umm Al-Qura University, P.O. Box 6725- 21955, Makkah, Saudi Arabia
| | - Nagwa I Elarabi
- Genetics Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | | |
Collapse
|
3
|
Afridi MS, Kumar A, Javed MA, Dubey A, de Medeiros FHV, Santoyo G. Harnessing root exudates for plant microbiome engineering and stress resistance in plants. Microbiol Res 2024; 279:127564. [PMID: 38071833 DOI: 10.1016/j.micres.2023.127564] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
A wide range of abiotic and biotic stresses adversely affect plant's growth and production. Under stress, one of the main responses of plants is the modulation of exudates excreted in the rhizosphere, which consequently leads to alterations in the resident microbiota. Thus, the exudates discharged into the rhizospheric environment play a preponderant role in the association and formation of plant-microbe interactions. In this review, we aimed to provide a synthesis of the latest and most pertinent literature on the diverse biochemical and structural compositions of plant root exudates. Also, this work investigates into their multifaceted role in microbial nutrition and intricate signaling processes within the rhizosphere, which includes quorum-sensing molecules. Specifically, it explores the contributions of low molecular weight compounds, such as carbohydrates, phenolics, organic acids, amino acids, and secondary metabolites, as well as the significance of high molecular weight compounds, including proteins and polysaccharides. It also discusses the state-of-the-art omics strategies that unveil the vital role of root exudates in plant-microbiome interactions, including defense against pathogens like nematodes and fungi. We propose multiple challenges and perspectives, including exploiting plant root exudates for host-mediated microbiome engineering. In this discourse, root exudates and their derived interactions with the rhizospheric microbiota should receive greater attention due to their positive influence on plant health and stress mitigation.
Collapse
Affiliation(s)
- Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras, CP3037, 37200-900 Lavras, MG, Brazil.
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, MP, India
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, MP, India
| | | | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030 Morelia, Mexico.
| |
Collapse
|
4
|
Bioactive Metabolite Survey of Actinobacteria Showing Plant Growth Promoting Traits to Develop Novel Biofertilizers. Metabolites 2023; 13:metabo13030374. [PMID: 36984814 PMCID: PMC10052678 DOI: 10.3390/metabo13030374] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The use of chemical fertilizers and pesticides has caused harmful impacts on the environment with the increase in economic burden. Biofertilizers are biological products containing living microorganisms capable of improving plant growth through eco-friendly mechanisms. In this work, three actinobacterial strains Streptomyces violaceoruber, Streptomyces coelicolor, and Kocuria rhizophila were characterized for multiple plant growth promoting (PGP) traits such as indole acetic acid production, phosphate solubilization, N2-fixation, and drought and salt tolerance. Then, these strains were investigated for their secreted and cellular metabolome, revealing a rich arsenal of bioactive molecules, including antibiotics and siderophores, with S. violaceoruber being the most prolific strain. Furthermore, the in vivo assays, performed on tomato (Solanum lycopersicum L.), resulted in an improved germination index and the growth of seedlings from seeds treated with PGP actinobacteria, with a particular focus on S. violaceoruber cultures. In particular, this last strain, producing volatile organic compounds having antimicrobial activity, was able to modulate volatilome and exert control on the global DNA methylation of tomato seedlings. Thus, these results, confirming the efficacy of the selected actinobacteria strains in promoting plant growth and development by producing volatile and non-volatile bioactive molecules, can promote eco-friendly alternatives in sustainable agriculture.
Collapse
|
5
|
Afridi MS, Ali S, Salam A, César Terra W, Hafeez A, Ali B, S AlTami M, Ameen F, Ercisli S, Marc RA, Medeiros FHV, Karunakaran R. Plant Microbiome Engineering: Hopes or Hypes. BIOLOGY 2022; 11:biology11121782. [PMID: 36552290 PMCID: PMC9774975 DOI: 10.3390/biology11121782] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Rhizosphere microbiome is a dynamic and complex zone of microbial communities. This complex plant-associated microbial community, usually regarded as the plant's second genome, plays a crucial role in plant health. It is unquestioned that plant microbiome collectively contributes to plant growth and fitness. It also provides a safeguard from plant pathogens, and induces tolerance in the host against abiotic stressors. The revolution in omics, gene-editing and sequencing tools have somehow led to unravel the compositions and latent interactions between plants and microbes. Similarly, besides standard practices, many biotechnological, (bio)chemical and ecological methods have also been proposed. Such platforms have been solely dedicated to engineer the complex microbiome by untangling the potential barriers, and to achieve better agriculture output. Yet, several limitations, for example, the biological obstacles, abiotic constraints and molecular tools that capably impact plant microbiome engineering and functionality, remained unaddressed problems. In this review, we provide a holistic overview of plant microbiome composition, complexities, and major challenges in plant microbiome engineering. Then, we unearthed all inevitable abiotic factors that serve as bottlenecks by discouraging plant microbiome engineering and functionality. Lastly, by exploring the inherent role of micro/macrofauna, we propose economic and eco-friendly strategies that could be harnessed sustainably and biotechnologically for resilient plant microbiome engineering.
Collapse
Affiliation(s)
- Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras, (UFLA), Lavras 37200-900, MG, Brazil
| | - Sher Ali
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil
| | - Abdul Salam
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Willian César Terra
- Department of Plant Pathology, Federal University of Lavras, (UFLA), Lavras 37200-900, MG, Brazil
| | - Aqsa Hafeez
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Mona S AlTami
- Biology Department, College of Science, Qassim University, Burydah 52571, Saudi Arabia
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănă ̧stur Street, 400372 Cluj-Napoca, Romania
| | - Flavio H V Medeiros
- Department of Plant Pathology, Federal University of Lavras, (UFLA), Lavras 37200-900, MG, Brazil
| | - Rohini Karunakaran
- Unit of Biochemistry, Centre of Excellence for Biomaterials Engineering, Faculty of Medicine, AIMST University, Semeling, Bedong 08100, Malaysia
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering (SSE), SIMATS, Thandalam, Chennai 602105, Tamil Nadu, India
- Centre of Excellence for Biomaterials Science, AIMST University, Semeling, Bedong 08100, Malaysia
| |
Collapse
|
6
|
Zhang T, Zhang H. Electrochemical analysis for the rapid screening of copper-tolerant bacteria. Bioelectrochemistry 2022; 148:108276. [DOI: 10.1016/j.bioelechem.2022.108276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
|
7
|
Afridi MS, Javed MA, Ali S, De Medeiros FHV, Ali B, Salam A, Sumaira, Marc RA, Alkhalifah DHM, Selim S, Santoyo G. New opportunities in plant microbiome engineering for increasing agricultural sustainability under stressful conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:899464. [PMID: 36186071 PMCID: PMC9524194 DOI: 10.3389/fpls.2022.899464] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/08/2022] [Indexed: 07/30/2023]
Abstract
Plant microbiome (or phytomicrobiome) engineering (PME) is an anticipated untapped alternative strategy that could be exploited for plant growth, health and productivity under different environmental conditions. It has been proven that the phytomicrobiome has crucial contributions to plant health, pathogen control and tolerance under drastic environmental (a)biotic constraints. Consistent with plant health and safety, in this article we address the fundamental role of plant microbiome and its insights in plant health and productivity. We also explore the potential of plant microbiome under environmental restrictions and the proposition of improving microbial functions that can be supportive for better plant growth and production. Understanding the crucial role of plant associated microbial communities, we propose how the associated microbial actions could be enhanced to improve plant growth-promoting mechanisms, with a particular emphasis on plant beneficial fungi. Additionally, we suggest the possible plant strategies to adapt to a harsh environment by manipulating plant microbiomes. However, our current understanding of the microbiome is still in its infancy, and the major perturbations, such as anthropocentric actions, are not fully understood. Therefore, this work highlights the importance of manipulating the beneficial plant microbiome to create more sustainable agriculture, particularly under different environmental stressors.
Collapse
Affiliation(s)
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Sher Ali
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), São Paulo, Brazil
| | | | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abdul Salam
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sumaira
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
8
|
Afridi MS, Fakhar A, Kumar A, Ali S, Medeiros FHV, Muneer MA, Ali H, Saleem M. Harnessing microbial multitrophic interactions for rhizosphere microbiome engineering. Microbiol Res 2022; 265:127199. [PMID: 36137486 DOI: 10.1016/j.micres.2022.127199] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/02/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
The rhizosphere is a narrow and dynamic region of plant root-soil interfaces, and it's considered one of the most intricate and functionally active ecosystems on the Earth, which boosts plant health and alleviates the impact of biotic and abiotic stresses. Improving the key functions of the microbiome via engineering the rhizosphere microbiome is an emerging tool for improving plant growth, resilience, and soil-borne diseases. Recently, the advent of omics tools, gene-editing techniques, and sequencing technology has allowed us to unravel the entangled webs of plant-microbes interactions, enhancing plant fitness and tolerance to biotic and abiotic challenges. Plants secrete signaling compounds with low molecular weight into the rhizosphere, that engage various species to generate a massive deep complex array. The underlying principle governing the multitrophic interactions of the rhizosphere microbiome is yet unknown, however, some efforts have been made for disease management and agricultural sustainability. This review discussed the intra- and inter- microbe-microbe and microbe-animal interactions and their multifunctional roles in rhizosphere microbiome engineering for plant health and soil-borne disease management. Simultaneously, it investigates the significant impact of immunity utilizing PGPR and cover crop strategy in increasing rhizosphere microbiome functions for plant development and protection using omics techniques. The ecological engineering of rhizosphere plant interactions could be used as a potential alternative technology for plant growth improvement, sustainable disease control management, and increased production of economically significant crops.
Collapse
Affiliation(s)
- Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras, CP3037, 37200-900 Lavras, MG, Brazil.
| | - Ali Fakhar
- Division of Applied Science, Gyeongsang National University, South Korea
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, MP, India
| | - Sher Ali
- NMR Lab, Department of Chemistry, Federal University of Paraná, Curitiba 81530-900, PR, Brazil
| | - Flavio H V Medeiros
- Department of Plant Pathology, Federal University of Lavras, CP3037, 37200-900 Lavras, MG, Brazil
| | - Muhammad Atif Muneer
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hina Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| |
Collapse
|
9
|
Ali B, Wang X, Saleem MH, Sumaira, Hafeez A, Afridi MS, Khan S, Zaib-Un-Nisa, Ullah I, do Amaral Júnior AT, Alatawi A, Ali S. PGPR-Mediated Salt Tolerance in Maize by Modulating Plant Physiology, Antioxidant Defense, Compatible Solutes Accumulation and Bio-Surfactant Producing Genes. PLANTS (BASEL, SWITZERLAND) 2022; 11:345. [PMID: 35161325 PMCID: PMC8840115 DOI: 10.3390/plants11030345] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 07/30/2023]
Abstract
Salinity stress is a barrier to crop production, quality yield, and sustainable agriculture. The current study investigated the plant growth promotion, biochemical and molecular characterization of bacterial strain Enterobacter cloacae PM23 under salinity stress (i.e., 0, 300, 600, and 900 mM). E. cloacae PM23 showed tolerance of up to 3 M NaCl when subjected to salinity stress. Antibiotic-resistant Iturin C (ItuC) and bio-surfactant-producing genes (sfp and srfAA) were amplified in E. cloacae PM23, indicating its multi-stress resistance potential under biotic and abiotic stresses. Moreover, the upregulation of stress-related genes (APX and SOD) helped to mitigate salinity stress and improved plant growth. Inoculation of E. cloacae PM23 enhanced plant growth, biomass, and photosynthetic pigments under salinity stress. Bacterial strain E. cloacae PM23 showed distinctive salinity tolerance and plant growth-promoting traits such as indole-3-acetic acid (IAA), siderophore, ACC deaminase, and exopolysaccharides production under salinity stress. To alleviate salinity stress, E. cloacae PM23 inoculation enhanced radical scavenging capacity, relative water content, soluble sugars, proteins, total phenolic, and flavonoid content in maize compared to uninoculated (control) plants. Moreover, elevated levels of antioxidant enzymes and osmoprotectants (Free amino acids, glycine betaine, and proline) were noticed in E. cloacae PM23 inoculated plants compared to control plants. The inoculation of E. cloacae PM23 significantly reduced oxidative stress markers under salinity stress. These findings suggest that multi-stress tolerant E. cloacae PM23 could enhance plant growth by mitigating salt stress and provide a baseline and ecofriendly approach to address salinity stress for sustainable agriculture.
Collapse
Affiliation(s)
- Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (B.A.); (A.H.); (I.U.)
| | - Xiukang Wang
- College of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Sumaira
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Aqsa Hafeez
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (B.A.); (A.H.); (I.U.)
| | - Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil;
| | - Shahid Khan
- Department of Agriculture, University of Swabi, Ambar, Swabi 94640, Pakistan;
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil;
| | - Zaib-Un-Nisa
- Cotton Research Institute, Multan 60000, Pakistan;
| | - Izhar Ullah
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (B.A.); (A.H.); (I.U.)
| | - Antônio Teixeira do Amaral Júnior
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil;
| | - Aishah Alatawi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia;
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
10
|
Mehmood S, Muneer MA, Tahir M, Javed MT, Mahmood T, Afridi MS, Pakar NP, Abbasi HA, Munis MFH, Chaudhary HJ. Deciphering distinct biological control and growth promoting potential of multi-stress tolerant Bacillus subtilis PM32 for potato stem canker. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2101-2114. [PMID: 34629781 PMCID: PMC8484416 DOI: 10.1007/s12298-021-01067-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/02/2021] [Accepted: 09/08/2021] [Indexed: 05/27/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) represent a set of microorganisms that play significant role in improving plant growth and controlling the phytopathogens. Unpredictable performance after the application of PGPR has been observed when these were shifted from in-vitro to in-vivo conditions due to the prevalence of various abiotic stress conditions. During growing period, the potato crop is subjected to a combination of biotic and abiotic stresses. Rhizoctonia solani, a soil-borne plant pathogen, causes reduced vigor and yield of potato crop worldwide. In the current study, multi-stress-tolerant rhizobacterial strain, Bacillus subtilis PM32, was isolated from field-grown potato with various plant growth promoting (PGP) traits including zinc and potassium solubilization, biological nitrogen fixation, ammonia and siderophore, as well as extracellular enzyme productions (cellulase, catalase, amylase, protease, pectinase, and chitinase). The strain PM32 exhibited a distinct potential to support plant growth by demonstrating production of indole-3-acetic acid (102.6 μM/mL), ACC-deaminase activity (1.63 μM of α-ketobutyrate/h/mg protein), and exopolysaccharides (2.27 mg/mL). By retarding mycelial growth of R. solani the strain PM32 drastically reduced pathogenicity of R. solani. The strain PM32 also suppressed the pathogenic activity significantly by impeding mycelial expansion of R. solani with inhibition co-efficient of 49.87. The B. subtilis PM32 also depicted significant tolerance towards salt, heavy metal (Pb), heat and drought stress. PCR based amplification of ituC and acds genes coding for iturin and ACC-deaminase activity respectively indicated potential of strain PM32 for lipopeptides production and ACC deaminase enzyme activity. Results of both in-vitro and pot experiments under greenhouse conditions depicted the efficiency of B. subtilis PM32 as a promising bio-control agent for R. solani infection together with enhanced growth of potato plants as deciphered from biomass accumulation, chlorophyll a, b, and carotenoid contents. Therefore, it was envisioned that application of indigenous multi-stress tolerant PGPR may serve to induce biotic and abiotic stress tolerance in crops/plants for pathogen control and sustainable global food supply. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01067-2.
Collapse
Affiliation(s)
- Shehzad Mehmood
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320 Pakistan
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100 Pakistan
| | - Muhammad Atif Muneer
- International Magnesium Institute, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou City, China
| | - Muhammad Tahir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100 Pakistan
| | - Muhammad Tariq Javed
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000 Pakistan
| | - Tariq Mahmood
- Department of Agriculture, Hazara University, Mansehra, Pakistan
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras, CP3037,37200-900 Lavras M.G, Brazil
| | - Najeeba Paree Pakar
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320 Pakistan
| | - Hina Ali Abbasi
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320 Pakistan
| | | | | |
Collapse
|