1
|
Guo C, Lv L, Liu Y, Ji M, Zang E, Liu Q, Zhang M, Li M. Applied Analytical Methods for Detecting Heavy Metals in Medicinal Plants. Crit Rev Anal Chem 2021; 53:339-359. [PMID: 34328385 DOI: 10.1080/10408347.2021.1953371] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
For thousands of years, medicinal plants (MPs) have been one of the main sources of drugs worldwide. However, recently, heavy metal pollution has seriously affected the quality and safety of MPs. Consuming MPs polluted by heavy metals such as Pb, Hg, and Cu significantly threaten the health of consumers. To manage this situation, the levels of heavy metals in MPs must be controlled. In recent years, this field has attracted significant attention, but few researchers have systematically summarized various analytical methods. Therefore, it is necessary to investigate methods that can accurately and effectively detect the amount of heavy metals in MPs. Herein, some important analytical methods used to detect heavy metals in MPs and their applications have been introduced and summarized in detail. These include atomic absorption spectrometry, atomic fluorescence spectrometry, inductively coupled plasma mass spectrometry, inductively coupled plasma atomic emission spectrometry, X-ray fluorescence spectrometry, neutron activation analysis, and anodic stripping voltammetry. The characteristics of these methods were subsequently compared and analyzed. In addition, high-performance liquid chromatography, ultraviolet spectrophotometry, and disposable electrochemical sensors have also been used for heavy metal detection in MPs. To elucidate the systematic and comprehensive information, these methods have also been briefly introduced in this review.
Collapse
Affiliation(s)
- Chunyan Guo
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Lijuan Lv
- Department of Basic Science, Tianjin Agricultural University, Tianjin, China
| | - Yuchao Liu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Mingyue Ji
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Erhuan Zang
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Qian Liu
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Min Zhang
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Minhui Li
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China.,Department of Pharmacy, Baotou Medical College, Baotou, China.,Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, China.,Inner Mongolia Engineering Research Center of the Planting and Development of Astragalus Membranaceus of the Geoherbs, Baotou Medical College, Baotou, China.,Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou, China
| |
Collapse
|
2
|
Microwave Enthrakometric Labs-On-A-Chip and On-Chip Enthrakometric Catalymetry: From Non-Conventional Chemotronics Towards Microwave-Assisted Chemosensors. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7040048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A unique chemical analytical approach is proposed based on the integration of chemical radiophysics with electrochemistry at the catalytically-active surface. This approach includes integration of: radiofrequency modulation polarography with platinum electrodes, applied as film enthrakometers for microwave measurements; microwave thermal analysis performed on enthrakometers as bolometric sensors; catalytic measurements, including registration of chemical self-oscillations on the surface of a platinum enthrakometer as the chemosensor; measurements on the Pt chemosensor implemented as an electrochemical chip with the enthrakometer walls acting as the chip walls; chemotron measurements and data processing in real time on the surface of the enthrakometric chip; microwave electron paramagnetic resonance (EPR) measurements using an enthrakometer both as a substrate and a microwave power meter; microwave acceleration of chemical reactions and microwave catalysis оn the Pt surface; chemical generation of radio- and microwaves, and microwave spin catalysis; and magnetic isotope measurements on the enthrakometric chip. The above approach allows one to perform multiparametric physical and electrochemical sensing on a single active enthrakometric surface, combining the properties of the selective electrochemical sensor and an additive physical detector.
Collapse
|
4
|
Pang H, Wu L, Tang Y, Zhou G, Qu C, Duan JA. Chemical Analysis of the Herbal Medicine Salviae miltiorrhizae Radix et Rhizoma (Danshen). Molecules 2016; 21:51. [PMID: 26742026 PMCID: PMC6273254 DOI: 10.3390/molecules21010051] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/23/2015] [Accepted: 12/25/2015] [Indexed: 12/20/2022] Open
Abstract
Radix Salviae miltiorrhizae et Rhizoma, known as Danshen in China, is one of the most popular traditional Chinese medicines. Recently, there has been increasing scientific attention on Danshen for its remarkable bioactivities, such as promoting blood circulation, removing blood stasis, and clearing away heat. This review summarized the advances in chemical analysis of Danshen and its preparations since 2009. Representative established methods were reviewed, including spectroscopy, thin layer chromatography, gas chromatography, liquid chromatography (LC), liquid chromatography-mass spectrometry (LC-MS), capillary electrophoresis, electrochemistry, and bioanalysis. Especially the analysis of polysaccharides in Danshen was discussed for the first time. Some proposals were also put forward to benefit quality control of Danshen.
Collapse
Affiliation(s)
- Hanqing Pang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Liang Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yuping Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Guisheng Zhou
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Cheng Qu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jin-ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
5
|
Determination of contents of eight alkaloids in fruits of Macleaya cordata (Willd) R. Br. from different habitats and antioxidant activities of extracts. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11771-010-0509-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|