1
|
Xie YF, Jiang YJ, Zou HY, Wang J, Huang CZ. Discrimination of copper and silver ions based on the label-free quantum dots. Talanta 2020; 220:121430. [PMID: 32928435 DOI: 10.1016/j.talanta.2020.121430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 11/19/2022]
Abstract
A simple and fast method for copper ions (Cu2+) and silver ions (Ag+) detection was established with cadmium telluride quantum dots (CdTe QDs) as fluorescent probes. In the presence of Cu2+ or Ag+, the fluorescence intensity of TGA-CdTe QD can be significantly quenched, which fitted a linear relationship between the fluorescence quenching degree (F0-F)/F0 and the concentration of metal ions. In this work, the lowest detected concentration for Cu2+ and Ag+ was 35.0 nM and 25.3 nM, respectively. In addition, the differentiation of Cu2+ and Ag+ at different concentrations was realized with the principal component analysis (PCA). Furthermore, Cu2+ was successfully detected in body fluids. This method provides a good potential for copper ions and silver ions detection with simplicity, rapidity, and excellent selectivity.
Collapse
Affiliation(s)
- Yi Fen Xie
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yong Jian Jiang
- Chongqing Key Laboratory of Biomedical Analysis (Southwest University), Chongqing Science & Technology Commission, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Hong Yan Zou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Jian Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Biomedical Analysis (Southwest University), Chongqing Science & Technology Commission, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
2
|
Chen Z, Li P, Zhang Z, Zhai X, Liang J, Chen Q, Li K, Lin G, Liu T, Wu Y. Ultrasensitive Sensor Using Quantum Dots-Doped Polystyrene Nanospheres for Clinical Diagnostics of Low-Volume Serum Samples. Anal Chem 2019; 91:5777-5785. [DOI: 10.1021/acs.analchem.9b00010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
3
|
Tashkhourian J, Absalan G, Jafari M, Zare S. A rapid and sensitive assay for determination of doxycycline using thioglycolic acid-capped cadmium telluride quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 152:119-125. [PMID: 26204505 DOI: 10.1016/j.saa.2015.07.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/24/2015] [Accepted: 07/12/2015] [Indexed: 05/20/2023]
Abstract
A rapid, simple and inexpensive spectrofluorimetric sensor for determination of doxycycline based on its interaction with thioglycolic acid-capped cadmium telluride quantum dots (TGA/CdTe QDs) has been developed. Under the optimum experimental conditions, the sensor exhibited a fast response time of <10s. The results revealed that doxycycline could quench the fluorescence of TGA/CdTe QDs via electron transfer from the QDs to doxycycline through a dynamic quenching mechanism. The sensor permitted determination of doxycycline in a concentration range of 1.9×10(-6)-6.1×10(-5)molL(-1) with a detection limit of 1.1×10(-7)molL(-1). The sensor was applied for determination of doxycycline in honey and human serum samples.
Collapse
Affiliation(s)
- Javad Tashkhourian
- Professor Massoumi Laboratory, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran.
| | - Ghodratollah Absalan
- Professor Massoumi Laboratory, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Marzieh Jafari
- Professor Massoumi Laboratory, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Saber Zare
- Professor Massoumi Laboratory, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| |
Collapse
|