1
|
Mousavi MS, Eun J. Effect of increased temperature and leachate recirculation on biogas production and settlement of municipal solid waste. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:1026-1035. [PMID: 36564864 DOI: 10.1177/0734242x221144563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
This study evaluated the effects of increased temperature and leachate recirculation on volatile solids (VS), biogas, hydrogen sulphide (H2S) leachate quality (pH and chemical oxygen demand) and the settlement of municipal solid waste (MSW). Three large-scale tests were conducted with no leachate recirculation at 21°C, weekly leachate recirculation at 20°C and weekly leachate recirculation at 50°C. Leachate recirculation and increased temperature accelerated biodegradation and pushed forward the onset time (from 27 to 8 days). The increase of biodegradation activity was reflected in the change of biogas production, VS and settlement. Compressibility index Cc, increased from 0.71 and 0.77 at 21°C to 0.83 when the temperature was 50°C. In addition, leachate recirculation and high temperature reduced H2S concentration levels by inhibiting the growth of sulphate-reducing bacteria and leachate recirculation lowered H2S production by dissolving the high H2S presence. The results showed that MSW can have significantly changed mechanical and biochemical behaviour under different temperatures and saturations. The results help understand the processes in landfills for more effective short-term and long-term design and management.
Collapse
Affiliation(s)
- M Sina Mousavi
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Omaha, NE, USA
| | - Jongwan Eun
- Department of Civil and Environmental Engineering, College of Engineering, University of Nebraska-Lincoln, Omaha, NE, USA
| |
Collapse
|
2
|
Chen J, Wang Y, Shao L, Lü F, Zhang H, He P. In-situ removal of odorous NH 3 and H 2S by loess modified with biologically stabilized leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116248. [PMID: 36126598 DOI: 10.1016/j.jenvman.2022.116248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/12/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
The loess regions distribute widely in Northwestern China, North America and Eastern Europe. For these regions, landfill is a suitable technology for solid waste treatment. However, as a landfill cover material, loess is not very effective in controlling the emission of malodorous gases. The present study modified loess with biologically stabilized leachate, and investigated the capacities and mechanisms of the modified loess to remove odorous NH3 and H2S. The removal rates of NH3 and H2S at different acclimation time, targeted gas concentrations and temperatures were measured. It was found that the NH3 removal rate of the modified loess was up to 0.08 μmol/(g·hr), which was 1.8 times that of the virgin loess. The H2S removal rate of the modified loess was up to 1.74 μmol/(g·hr), which was 1.25 times that of the virgin loess. The half-meter loess layer modified by biologically stabilized leachate achieved nearly 100% removal of H2S. The improvement of NH3 and H2S removal ability was mainly due to the enrichment of relevant microorganisms. This work proposed a novel method for in-situ control of malodorous pollutants in landfills in the loess regions, and proved that the in-situ removal of NH3 and H2S using the loess modified with biologically stabilized leachate is feasible and cost-effective.
Collapse
Affiliation(s)
- Junlan Chen
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Yujing Wang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Liming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
3
|
Chen Z, Feng Q, Yue R, Chen Z, Moselhi O, Soliman A, Hammad A, An C. Construction, renovation, and demolition waste in landfill: a review of waste characteristics, environmental impacts, and mitigation measures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46509-46526. [PMID: 35508848 DOI: 10.1007/s11356-022-20479-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
With the increase in global population, industrialization, and urbanization, waste from construction, renovation, and demolition (CRD) activities has grown rapidly. There are some issues associated with the disposal of CRD waste in landfills. Depositing in landfills is still the main method for CRD waste disposal from the global perspective. The objective of this study is to comprehensively review the environmental impacts and management technologies for CRD waste in landfills. It includes the overview of the current CRD waste flow and relevant policies worldwide. The main environmental problems caused by CRD waste in landfills include leachate and H2S gas emission. This paper summarizes the primary environmental impacts caused by landfilling CRD waste and the available mitigation technologies. It also includes the use of CRD waste as an alternative material in landfill barriers. Although many technologies can help mitigate the environmental impacts caused by landfilling CRD waste, the optimal solution is to divert the waste flow from landfills using the "3R" principle. In the end, the existing research gaps in CRD waste and landfill management are also discussed.
Collapse
Affiliation(s)
- Zhikun Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada
| | - Qi Feng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada
| | - Rengyu Yue
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada
| | - Osama Moselhi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada
| | - Ahmed Soliman
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada
| | - Amin Hammad
- Institute for Information Systems Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada.
| |
Collapse
|
4
|
Habeeb OA, Kanthasamy R, Ali GA, Sethupathi S, Yunus RBM. Hydrogen sulfide emission sources, regulations, and removal techniques: a review. REV CHEM ENG 2017. [DOI: 10.1515/revce-2017-0004] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Abstract
This review highlights the recent technologies of H2S removal from wastewater in the petroleum refinery. H2S is a harmful, putrid, and hazardous gaseous compound. The main processes such as physicochemical, chemical, biological, and electrochemical methods were compared and discussed in detail. The effects of various parameters and adsorbent characteristics were highlighted and correlated with the adsorption capacities. Surface functional groups and porosity surface area play a crucial role in the process of single-phase and composite adsorbents. Composite materials impregnated with some metals showed high removal efficiencies. It was found that the adsorption process is the most relevant way for H2S removal due to its high removal efficiency, low cost, eco-friendly, and operational simplicity. This study serves as a useful guideline for those who are interested in H2S removal.
Collapse
Affiliation(s)
- Omar Abed Habeeb
- Faculty of Chemical and Natural Resources Engineering , Universiti Malaysia Pahang , Gambang , 26300 Kuantan , Malaysia
| | - Ramesh Kanthasamy
- Faculty of Chemical and Natural Resources Engineering , Universiti Malaysia Pahang , Gambang , 26300 Kuantan , Malaysia
| | - Gomaa A.M. Ali
- Faculty of Industrial Sciences and Technology , Universiti Malaysia Pahang , Gambang , 26300 Kuantan , Malaysia
- Chemistry Department , Faculty of Science, Al-Azhar University , Assiut 71524 , Egypt
- Al-Azhar Center of Nanoscience and Applications (ACNA) , Al-Azhar University , Assiut 71524 , Egypt
| | - Sumathi Sethupathi
- Department of Environmental Engineering , Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman , 31900 Perak , Malaysia
| | - Rosli Bin Mohd Yunus
- Faculty of Chemical and Natural Resources Engineering , Universiti Malaysia Pahang , Gambang , 26300 Kuantan , Malaysia
| |
Collapse
|
5
|
Fang Y, Zhong Z, Shen D, Du Y, Xu J, Long Y. Endogenous mitigation of H2S inside of the landfills. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:2505-2512. [PMID: 26423286 DOI: 10.1007/s11356-015-5482-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
Vast quantities of hydrogen sulfide (H2S) emitted from landfill sites require urgent disposal. The current study focused on source control and examined the migration and conversion behavior of sulfur compounds in two lab-scale simulated landfills with different operation modes. It aimed to explore the possible strategies and mechanisms for H2S endogenous mitigation inside of landfills during decomposition. It was found that the strength of H2S emissions from the landfill sites was dependent on the municipal solid waste (MSW) degradation speed and vertical distribution of sulfide. Leachate recirculation can shorten both the H2S influence period and pollution risk to the surrounding environment. H2S endogenous mitigation may be achieved by chemical oxidation, biological oxidation, adsorption, and/or precipitation in different stages. Migration and conversion mainly affected H2S release behavior during the initial stabilization phase in the landfill. Microbial activities related to sulfur, nitrogen, and iron can further promote H2S endogenous mitigation during the high reducing phase. Thus, H2S endogenous mitigation can be effectively enhanced via control of the aforementioned processes.
Collapse
Affiliation(s)
- Yuan Fang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Zhong Zhong
- Zhejiang Environmental Science and Design Institute, Hangzhou, 310007, China
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yao Du
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Jing Xu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
6
|
Sulfide oxidation and nitrate reduction for potential mitigation of H2S in landfills. Biodegradation 2015; 26:115-26. [DOI: 10.1007/s10532-015-9720-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/04/2015] [Indexed: 10/24/2022]
|
7
|
López A, Lobo A. Emissions of C&D refuse in landfills: a European case. WASTE MANAGEMENT (NEW YORK, N.Y.) 2014; 34:1446-1454. [PMID: 24824964 DOI: 10.1016/j.wasman.2014.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/17/2014] [Accepted: 04/06/2014] [Indexed: 06/03/2023]
Abstract
A field study was developed in a new landfill for refuse from construction and demolition (C&D) material recovery plants of small size (4 Ha.) in Europe, with the aim of evaluating the liquid and gas emissions in this type of facility at a large scale. It included characterization of the materials, monitoring leachate and gas quantity and composition. Besides thermometers, piezometers and sampling ports were placed in several points within the waste. This paper presents the data obtained for five years of the landfill life. The materials disposed were mainly made up of wood and concrete, similar to other C&D debris sites, but the amount of gypsum drywall (below 3% of the waste) was significantly smaller than other available studies, where percentages above 20% had been reported. Leachate contained typical C&D pollutants, such as different inorganic ions and metals, some of which exceeded other values reported in the literature (conductivity, ammonium, lead and arsenic). The small net precipitation in the area and the leachate recirculation into the landfill surface help explain these higher concentrations, thus highlighting the impact of liquid to solid (L/S) ratio on leachate characteristics. In contrast to previous studies, neither odor nuisances nor significant landfill gas over the surface were detected. However, gas samples taken from the landfill inside revealed sulfate reducing and methanogenic activity.
Collapse
Affiliation(s)
- Ana López
- Environmental Engineering Group, Department of Science and Techniques of Water and the Environment, University of Cantabria, Avd. Los Castros s/n, Santander 39005, Cantabria, Spain.
| | - Amaya Lobo
- Environmental Engineering Group, Department of Science and Techniques of Water and the Environment, University of Cantabria, Avd. Los Castros s/n, Santander 39005, Cantabria, Spain.
| |
Collapse
|