Tian Y, Zhang H, Xu L, Chen M, Chen F. Self-assembled monolayers of bimetallic Au/Ag nanospheres with superior surface-enhanced Raman scattering activity for ultra-sensitive triphenylmethane dyes detection.
OPTICS LETTERS 2018;
43:635-638. [PMID:
29444040 DOI:
10.1364/ol.43.000635]
[Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/04/2018] [Indexed: 06/08/2023]
Abstract
The bimetallic Au/Ag self-assembled monolayers (SAMs) were constructed by using mono-dispersed Au/Ag nanospheres (Ag: 4.07%-34.53%) via evaporation-based assembly strategy. The composition-dependent surface-enhanced Raman scattering (SERS) spectroscopy revealed that the Au/Ag (Ag: 16.83%) SAMs provide maximized activity for triphenylmethane dyes detection. With the inter-metallic synergy, the optimized SAMs enable the Raman intensity of crystal violet molecules to be about 223 times higher than that of monometallic Au SAMs. Moreover, the SERS signals with excellent uniformity (<5% variation) are sensitive down to 10-13 M concentrations because of the optimal matching between bimetallic plasmon resonance and the incident laser wavelength.
Collapse