1
|
Demirci UB. Mechanistic insights into the thermal decomposition of ammonia borane, a material studied for chemical hydrogen storage. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01366h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have now a better understanding of the mechanisms of thermal decomposition of ammonia borane, a widely studied hydrogen storage material.
Collapse
Affiliation(s)
- Umit B. Demirci
- Institut Européen des Membranes
- IEM – UMR 5635
- ENSCM
- CNRS
- Univ Montpellier
| |
Collapse
|
2
|
Coles NT, Webster RL. Iron Catalyzed Dehydrocoupling of Amine- and Phosphine-Boranes. Isr J Chem 2017; 57:1070-1081. [PMID: 29497210 PMCID: PMC5820755 DOI: 10.1002/ijch.201700018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/07/2017] [Indexed: 11/21/2022]
Abstract
Catalytic dehydrocoupling methodologies, whereby dihydrogen is released from a substrate (or intermolecularly from two substrates) is a mild and efficient method to construct main group element-main group element bonds, the products of which can be used in advanced materials, and also for the development of hydrogen storage materials. With growing interest in the potential of compounds such as ammonia-borane to act as hydrogen storage materials which contain a high weight% of H2, along with the current heightened interest in base metal catalyzed processes, this review covers recent developments in amine and phosphine dehydrocoupling catalyzed by iron complexes. The complexes employed, products formed and mechanistic proposals will be discussed.
Collapse
Affiliation(s)
- Nathan T. Coles
- Department of ChemistryUniversity of BathClaverton DownBathUK.BA2 7AY.
| | - Ruth L. Webster
- Department of ChemistryUniversity of BathClaverton DownBathUK.BA2 7AY.
| |
Collapse
|
3
|
Coles NT, Mahon MF, Webster RL. Phosphine- and Amine-Borane Dehydrocoupling Using a Three-Coordinate Iron(II) β-Diketiminate Precatalyst. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00326] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nathan T. Coles
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
| | - Mary F. Mahon
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
| | - Ruth L. Webster
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
| |
Collapse
|
4
|
Zhao H, Ren FD, Wang YH. Theoretical insight into the BH 3·HCN adsorption on the Co(100) and Co(110) surfaces as hydrogen storage. J Mol Model 2017; 23:126. [PMID: 28321654 DOI: 10.1007/s00894-017-3298-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 02/27/2017] [Indexed: 10/19/2022]
Abstract
Fifteen configurations and adsorption energies of the adsorption sites of BH3∙∙∙HCN on Co(100) and Co(110) surfaces were investigated using the density functional theory. The results show that after BH3∙∙∙HCN is adsorbed, although there is no general behavior for the H∙∙∙H distances, the adsorption energies of BH3∙∙∙HCN are always far stronger than those of H2 on Co surfaces, suggesting that the dihydrogen-bonded complex, one kind of prospective material for reversible hydrogen storage, can be tightly adsorbed on the surfaces of metals. Thus, the attempts to store the significant amounts of H2 can be successful by the way that the dihydrogen-bonded complexes are adsorbed on the surfaces of metals. The stability and binding mechanism was analyzed by the Mulliken charge population and reduced density gradients (RDGs) methods. Graphical Abstract BH3···HCN adsorption on Co surface.
Collapse
Affiliation(s)
- He Zhao
- School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China. .,State Key Lab of Advanced Welding & Joining, Harbin Institute of Technology, Harbin, 150001, China.
| | - Fu-de Ren
- School of Chemical and Environment Engineering, North University of China, Taiyuan, 030051, China
| | - Yan-Hong Wang
- School of Chemical and Environment Engineering, North University of China, Taiyuan, 030051, China
| |
Collapse
|
5
|
Pomogaeva AV, Morokuma K, Timoshkin AY. Mechanisms of Hydrogen Generation from Tetrameric Clusters of Lithium Amidoborane. J Phys Chem A 2016; 120:145-52. [PMID: 26693588 DOI: 10.1021/acs.jpca.5b09924] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first-principles study of dehydrogenation mechanism of tetrameric clusters of lithium amidoborane LiNH2BH3, (LiAB)4, is presented. The choice of tetramer is based on the suspicion that dimeric cluster models used in previous theoretical studies are too small to capture the essence of the reaction. Dehydrogenation pathways starting from three isomers of (LiAB)4 tetramers were explored by applying the artificial force induced reaction (AFIR) method at the M06 level of theory. All obtained reaction pathways feature initial dimerization of two LiAB molecules in the tetramer. Formation of intermediates containing the Li3H moiety is a very characteristic feature of all pathways. In the succeeding rate-limiting step of the release of H2 molecule, a hydridic H atom of the Li3H moiety activates a protic H atom of the NH2 group with formation of the Li2H2 moiety in transition state. The most kinetically favorable pathway has the activation enthalpy of 26.6 kcal mol(-1), substantially lower than that found for dimeric cluster. The obtained results suggest that only three LiAB molecules directly participate in the elementary reactions.
Collapse
Affiliation(s)
- Anna V Pomogaeva
- Inorganic Chemistry Group, Institute of Chemistry, St. Petersburg State University , Universitetskaya nab. 7/9, St. Petersburg 199034, Russia
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University , Kyoto 606-8103, Japan
| | - Alexey Y Timoshkin
- Inorganic Chemistry Group, Institute of Chemistry, St. Petersburg State University , Universitetskaya nab. 7/9, St. Petersburg 199034, Russia
| |
Collapse
|
6
|
Golub IE, Gulyaeva ES, Filippov OA, Dyadchenko VP, Belkova NV, Epstein LM, Arkhipov DE, Shubina ES. Dihydrogen bond intermediated alcoholysis of dimethylamine-borane in nonaqueous media. J Phys Chem A 2015; 119:3853-68. [PMID: 25822484 DOI: 10.1021/acs.jpca.5b01921] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dimethylamine-borane (DMAB) acid/base properties, its dihydrogen-bonded (DHB) complexes and proton transfer reaction in nonaqueous media were investigated both experimentally (IR, UV/vis, NMR, and X-ray) and theoretically (DFT, NBO, QTAIM, and NCI). The effects of DMAB concentration, solvents polarity and temperature on the degree of DMAB self-association are shown and the enthalpy of association is determined experimentally for the first time (-ΔH°assoc = 1.5-2.3 kcal/mol). The first case of "improper" (blue-shifting) NH···F hydrogen bonds was observed in fluorobenzene and perfluorobenzene solutions. It was shown that hydrogen-bonded complexes are the intermediates of proton transfer from alcohols and phenols to DMAB. The reaction mechanism was examined computationally taking into account the coordinating properties of the reaction media. The values of the rate constants of proton transfer from HFIP to DMAB in acetone were determined experimentally [(7.9 ± 0.1) × 10(-4) to (1.6 ± 0.1) × 10(-3) mol(-1)·s(-1)] at 270-310 K. Computed activation barrier of this reaction ΔG(‡theor)298 K(acetone) = 23.8 kcal/mol is in good agreement with the experimental value of the activation free energy ΔG(‡exp)270 K = 21.1 kcal/mol.
Collapse
Affiliation(s)
- Igor E Golub
- †A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, 119991 Moscow, Russia.,‡Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119234 Moscow, Russia
| | - Ekaterina S Gulyaeva
- †A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, 119991 Moscow, Russia.,‡Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119234 Moscow, Russia
| | - Oleg A Filippov
- †A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, 119991 Moscow, Russia
| | - Victor P Dyadchenko
- ‡Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119234 Moscow, Russia
| | - Natalia V Belkova
- †A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, 119991 Moscow, Russia
| | - Lina M Epstein
- †A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, 119991 Moscow, Russia
| | - Dmitry E Arkhipov
- †A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, 119991 Moscow, Russia
| | - Elena S Shubina
- †A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, 119991 Moscow, Russia
| |
Collapse
|
7
|
|