Tan Y, Cheng Z, Liu Y, Gao X, Liu S, Shen Z. Quantum parameter analysis of the adsorption mechanism by freshly formed ferric hydroxide for synthetic dye and antibiotic wastewaters.
CHEMOSPHERE 2021;
280:130577. [PMID:
33971408 DOI:
10.1016/j.chemosphere.2021.130577]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/24/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
In this study, the adsorption effect by freshly formed ferric hydroxide (FFFH) for the removal of 47 synthetic dye and antibiotic wastewaters under different pH conditions (i.e., pH = 4, 7, and 10) was investigated. The average total organic carbon (TOC) removal rates (Rexp) of pollutants under acidic, neutral, and alkaline conditions were 27.10 ± 3.21%, 15.16 ± 2.48%, and 9.72 ± 2.81%, respectively. By analyzing the characteristics of FFFH measured by SEM, XRD, FT-IR, TGA and BET, the properties of pollutants, and the values of Rexp, one can conclude that the large specific surface area and rich hydroxyl groups on the surface of FFFH were the reasons for its adsorption capacity for organic pollutants, and the electrostatic adsorption was the main reason for higher removal rate in acidic condition. Subsequently, to better elucidate the intrinsic factors influencing the removal rates at the molecular structure level, three optimal quantitative structure-activity relationship (QSAR) models were established by using multiple linear regression (MLR) analysis. Results of model validations (e.g., regression coefficient, internal and external verifications, and Y-randomization) showed that the established models exhibited excellent stability, reliability, and robustness with the values of R2 = 0.7544, 0.7764, 0.7528, Q2INT = 0.6451, 0.6836, 0.6228, and Q2EXT = 0.5890, 0.6029, 0.7298 under acidic, neutral, and alkaline conditions, respectively. The results of quantum parameter analysis revealed that the adsorption mechanism of FFFH for dyes and antibiotics mainly includes the activity of adsorption site, the behavior of electron transfer and the strength of molecular polarity.
Collapse