1
|
Fan X, Zhang P, Fan M, Jiang P, Leng Y. Immobilized lipase for sustainable hydrolysis of acidified oil to produce fatty acid. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02891-4. [PMID: 37329348 DOI: 10.1007/s00449-023-02891-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/02/2023] [Indexed: 06/19/2023]
Abstract
Acidified oil is obtained from by-product of crops oil refining industry, which is considered as a low-cost material for fatty acid production. Hydrolysis of acidified oil by lipase catalysis for producing fatty acid is a sustainable and efficient bioprocess that is an alternative of continuous countercurrent hydrolysis. In this study, lipase from Candida rugosa (CRL) was immobilized on magnetic Fe3O4@SiO2 via covalent binding strategy for highly efficient hydrolysis of acidified soybean oil. FTIR, XRD, SEM and VSM were used to characterize the immobilized lipase (Fe3O4@SiO2-CRL). The enzyme properties of the Fe3O4@SiO2-CRL were determined. Fe3O4@SiO2-CRL was used to catalyze the hydrolysis of acidified soybean oil to produce fatty acids. Catalytic reaction conditions were studied, including amount of catalyst, reaction time, and water/oil ratio. The results of optimization indicated that the hydrolysis rate reached 98% under 10 wt.% (oil) of catalyst, 3:1 (v/v) of water/oil ratio, and 313 K after 12 h. After 5 cycles, the hydrolysis activity of Fe3O4@SiO2-CRL remained 55%. Preparation of fatty acids from high-acid-value by-products through biosystem shows great industrial potential.
Collapse
Affiliation(s)
- Xiulin Fan
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Pingbo Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Mingming Fan
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Pingping Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yan Leng
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| |
Collapse
|
2
|
Polymer/Enzyme Composite Materials—Versatile Catalysts with Multiple Applications. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A significant interest was granted lately to enzymes, which are versatile catalysts characterized by natural origin, with high specificity and selectivity for particular substrates. Additionally, some enzymes are involved in the production of high-valuable products, such as antibiotics, while others are known for their ability to transform emerging contaminates, such as dyes and pesticides, to simpler molecules with a lower environmental impact. Nevertheless, the use of enzymes in industrial applications is limited by their reduced stability in extreme conditions and by their difficult recovery and reusability. Rationally, enzyme immobilization on organic or inorganic matrices proved to be one of the most successful innovative approaches to increase the stability of enzymatic catalysts. By the immobilization of enzymes on support materials, composite biocatalysts are obtained that pose an improved stability, preserving the enzymatic activity and some of the support material’s properties. Of high interest are the polymer/enzyme composites, which are obtained by the chemical or physical attachment of enzymes on polymer matrices. This review highlights some of the latest findings in the field of polymer/enzyme composites, classified according to the morphology of the resulting materials, following their most important applications.
Collapse
|
3
|
Dai H, Lu Y, Shi H, Tang L, Sun X, Ou Z. Efficient enantiomer selective acetylation of 1-methyl-3-phenylpropylamine by Fe3O4-APTES-CS2-lipase magnetic nanoparticles in an alternating magnetic field. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1884230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Hongqian Dai
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuan Lu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Hanbing Shi
- The Third Affiliated Hospital, Qiqihar Medical College, Qiqihar, China
| | - Lan Tang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Xingyuan Sun
- The Third Affiliated Hospital, Qiqihar Medical College, Qiqihar, China
| | - Zhimin Ou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
4
|
Different strategies for the lipase immobilization on the chitosan based supports and their applications. Int J Biol Macromol 2021; 179:170-195. [PMID: 33667561 DOI: 10.1016/j.ijbiomac.2021.02.198] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 01/15/2023]
Abstract
Immobilized enzymes have received incredible interests in industry, pharmaceuticals, chemistry and biochemistry sectors due to their various advantages such as ease of separation, multiple reusability, non-toxicity, biocompatibility, high activity and resistant to environmental changes. This review in between various immobilized enzymes focuses on lipase as one of the most practical enzyme and chitosan as a preferred biosupport for lipase immobilization and provides a broad range of studies of recent decade. We highlight several aspects of lipase immobilization on the surface of chitosan support containing various types of lipase and immobilization techniques from physical adsorption to covalent bonding and cross-linking with their benefits and drawbacks. The recent advances and future perspectives that can improve the present problems with lipase and chitosan such as high-price of lipase and low mechanical resistance of chitosan are also discussed. According to the literature, optimization of immobilization methods, combination of these methods with other techniques, physical and chemical modifications of chitosan, co-immobilization and protein engineering can be useful as a solution to overcome the mentioned limitations.
Collapse
|
5
|
Seo J, Shin M, Lee J, Lee T, Oh JM, Park C. Novel and highly efficient lipase-catalyzed esterification of formic acid with hexanol for waste gas reutilization. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Lu Y, Dai H, Shi H, Tang L, Sun X, Ou Z. Synthesis of ethyl (R)-4-chloro-3-hydroxybutyrate by immobilized cells using amino acid-modified magnetic nanoparticles. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Purification and identification of novel alkaline pectinase PNs31 from Bacillus subtilis CBS31 and its immobilization for bioindustrial applications. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0648-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Kim S, Joo KI, Jo BH, Cha HJ. Stability-Controllable Self-Immobilization of Carbonic Anhydrase Fused with a Silica-Binding Tag onto Diatom Biosilica for Enzymatic CO 2 Capture and Utilization. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27055-27063. [PMID: 32460480 DOI: 10.1021/acsami.0c03804] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Exploiting carbonic anhydrase (CA), an enzyme that catalyzes the hydration of CO2, is a powerful route for eco-friendly and cost-effective carbon capture and utilization. For successful industrial applications, the stability and reusability of CA should be improved, which necessitates enzyme immobilization. Herein, the ribosomal protein L2 (Si-tag) from Escherichia coli was utilized for the immobilization of CA onto diatom biosilica, a promising renewable support material. The Si-tag was redesigned (L2NC) and genetically fused to CA from the marine bacterium Hydrogenovibrio marinus (hmCA). One-step self-immobilization of hmCA-L2NC onto diatom biosilica by simple mixing was successfully achieved via Si-tag-mediated strong binding, showing multilayer adsorption with a maximal loading of 1.4 wt %. The immobilized enzyme showed high reusability and no enzyme leakage even under high temperature conditions. The activity of hmCA-L2NC was inversely proportional to the enzyme loading, while the stability was directly proportional to the enzyme loading. This discovered activity-stability trade-off phenomenon could be attributed to macromolecular crowding on the highly dense surface of the enzyme-immobilized biosilica. Collectively, our system not only facilitates the stability-controllable self-immobilization of enzyme via Si-tag on a diatom biosilica support for the robust, facile, and green construction of stable biocatalysts, but is also a unique model for studying the macromolecular crowding effect on surface-immobilized enzymes.
Collapse
Affiliation(s)
- Suhyeok Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Kye Il Joo
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Byung Hoon Jo
- Division of Life Science and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
9
|
Hyun K, Kang S, Kim J, Kwon Y. New Biocatalyst Including a 4-Nitrobenzoic Acid Mediator Embedded by the Cross-Linking of Chitosan and Genipin and Its Use in an Energy Device. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23635-23643. [PMID: 32343553 DOI: 10.1021/acsami.0c05564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new anodic catalyst consisting of carbon nanotube, 4-nitrobenzoic acid, chitosan, genipin, and glucose oxidase (GOx) (CNT/4-NBA/[Chit/GOx/GP]) is suggested to promote the glucose oxidation reaction (GOR) and the performance of enzymatic biofuel cell (EBC). In this catalyst, through the cross-linked structure of chitosan and genipin and the proper distribution of amine groups within chitosan, many GOx molecules are maximally captured, their leaching out is suppressed, and the GOR is improved upon. In addition, 4-nitrobenzoic acid plays the role of mediator well. The effect induced by the cross-linked structure is evaluated by ultraviolet-visible (UV-vis) spectroscopy, pH measurements, and electrochemical characterizations. According to the characterizations, the new CNT/4-NBA/[Chit/GOx/GP] catalyst contains a large amount of GOx (17.8 mg/mL) and produces a high anodic current (331 μA/cm2 at 0.3 V vs Ag/AgCl) with a low onset potential (0.05 V vs Ag/AgCl) because its catalytic activity follows the desirable reaction pathway that minimizes creation of a protonated amine group that interferes with GOR. When the performance of EBC using this catalyst as an anodic electrode is measured, the EBC shows a high open-circuit voltage of 0.54 V and a maximum power density of 38 μW/cm2.
Collapse
Affiliation(s)
- Kyuhwan Hyun
- Graduate School of Energy and Environment, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Suhyeon Kang
- Graduate School of Energy and Environment, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Jiyong Kim
- Department of Energy and Chemical Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Yongchai Kwon
- Graduate School of Energy and Environment, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| |
Collapse
|
10
|
|
11
|
Pădurețu CC, Isopescu R, Rău I, Apetroaei MR, Schröder V. Influence of the parameters of chitin deacetylation process on the chitosan obtained from crab shell waste. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0379-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|