Lin S, Wang Q, Huang H, Zhang Y. Piezocatalytic and Photocatalytic Hydrogen Peroxide Evolution of Sulfide Solid Solution Nano-Branches from Pure Water and Air.
SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022;
18:e2200914. [PMID:
35403802 DOI:
10.1002/smll.202200914]
[Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Hydrogen peroxide (H2 O2 ) as a useful chemical has a wide range of applications, and the development of efficient semiconducting materials for H2 O2 production is deemed as a promising strategy to realize the energy conversion. In this paper, Cdx Zn1-x S (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1) nano-branches are fabricated and the piezocatalytic and photocatalytic H2 O2 evolution performance are studied. Under ultrasound condition, the H2 O2 yield of as-synthesized solid solutions is all higher than those of pristine ZnS and CdS, and optimal evolution rate achieves 21.9 µmol g-1 h-1 for Cd0.5 Zn0.5 S without any sacrificial agent, while it is increased to 151.6 µmol g-1 h-1 under visible light irradiation. The piezo/photoelectrochemical tests, piezoresponse force microscopy (PFM), and computational simulation reveal that the nano-branch structure benefits the mechanical energy conversion more, favoring the H2 O2 evolution for Cd0.5 Zn0.5 S, and a higher concentration of charge carriers is generated in photocatalysis. The active radical trapping and in situ electron spin resonance (ESR) experiments demonstrate that both of the H2 O2 generation pathways are originated from oxygen reduction by the sequential two-step single-electron reaction. This work opens a door for promoting the H2 O2 production from nanostructure and solid solution design.
Collapse