1
|
Peculiarities of electrocatalytic and corrosion behavior of palladium and palladium-molybdenum electrolytic deposits. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
2
|
Visible light photochemical synthesis of ultrasmall palladium/copper bimetallic particles at room temperature and its catalytic application in degradation of p-NP. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
A review of formic acid decomposition routes on transition metals for its potential use as a liquid H2 carrier. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Chemically prepared Pd-Cd alloy nanocatalysts as the highly active material for formic acid electrochemical oxidation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Jang JH, Jeffery AA, Min J, Jung N, Yoo SJ. Emerging carbon shell-encapsulated metal nanocatalysts for fuel cells and water electrolysis. NANOSCALE 2021; 13:15116-15141. [PMID: 34554169 DOI: 10.1039/d1nr01328a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of low-cost, high-efficiency electrocatalysts is of primary importance for hydrogen energy technology. Noble metal-based catalysts have been extensively studied for decades; however, activity and durability issues still remain a challenge. In recent years, carbon shell-encapsulated metal (M@C) catalysts have drawn great attention as novel materials for water electrolysis and fuel cell applications. These electrochemical reactions are governed mainly by interfacial charge transfer between the core metal and the outer carbon shell, which alters the electronic structure of the catalyst surface. Furthermore, the rationally designed and fine-tuned carbon shell plays a very interesting role as a protective layer or molecular sieve layer to improve the performance and durability of energy conversion systems. Herein, we review recent advances in the use of M@C type nanocatalysts for extensive applications in fuel cells and water electrolysis with a focus on the structural design and electronic structure modulation of carbon shell-encapsulated metal/alloys. Finally, we highlight the current challenges and future perspectives of these catalytic materials and related technologies in this field.
Collapse
Affiliation(s)
- Jue-Hyuk Jang
- Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - A Anto Jeffery
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Jiho Min
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Namgee Jung
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Sung Jong Yoo
- Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Energy & Environmental Technology, KIST school, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Goswami C, Saikia H, Jyoti Borah B, Jyoti Kalita M, Tada K, Tanaka S, Bharali P. Boosting the electrocatalytic activity of Pd/C by Cu alloying: Insight on Pd/Cu composition and reaction pathway. J Colloid Interface Sci 2021; 587:446-456. [PMID: 33383434 DOI: 10.1016/j.jcis.2020.11.104] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 10/22/2022]
Abstract
Tuning composition of Pd-based bimetallic electrocatalysts of high stability and durability is of great importance in energy-related reactions. This study reports the remarkable electrocatalytic performance of carbon-supported bimetallic Pd-Cu alloy nanoparticles (NPs) towards formic acid oxidation (FAO) and oxygen reduction reaction (ORR). Among various bimetallic compositions, Pd3Cu/C alloy NPs exhibits the best FAO and ORR activity. During FAO reaction, Pd3Cu/C alloy NPs exhibits a peak with a current density of 28.33 mA cm-2 and a potential of 0.2 V (vs. Ag/AgCl) which is higher than that of the other PdCu compositions and standard 20 wt% Pd/C catalyst. Meanwhile, the onset potential (-0.09 V), half-wave potential (-0.18 V), limiting current density at 1600 rpm (-4.9 mA cm-2) and Tafel slope (64 mV dec-1) values of Pd3Cu/C alloy NPs validate its superiority over the conventional 20 wt% Pt/C catalyst for ORR. Experimental and DFT studies have confirmed that the enhanced activity can be attributed to the electronic effect that arises after Cu alloying which causes a downshift of Pd d-band center and structural effect that produces highly dispersed NPs over the carbon matrix with high electrochemically active surface area.
Collapse
Affiliation(s)
- Chiranjita Goswami
- Department of Chemical Sciences, Tezpur University, Tezpur, Napaam 784 028, Assam, India
| | - Himadri Saikia
- Department of Chemical Sciences, Tezpur University, Tezpur, Napaam 784 028, Assam, India; Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785 006, Assam, India
| | - Biraj Jyoti Borah
- Department of Chemical Sciences, Tezpur University, Tezpur, Napaam 784 028, Assam, India
| | - Manash Jyoti Kalita
- Department of Chemical Sciences, Tezpur University, Tezpur, Napaam 784 028, Assam, India
| | - Kohei Tada
- Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Japan
| | - Shingo Tanaka
- Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Japan
| | - Pankaj Bharali
- Department of Chemical Sciences, Tezpur University, Tezpur, Napaam 784 028, Assam, India.
| |
Collapse
|
7
|
Affiliation(s)
- Zhenni Ma
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
| | - Ulrich Legrand
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
| | - Ergys Pahija
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
| | - Jason R. Tavares
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
| | - Daria C. Boffito
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
- Canada Research Chair in Intensified Mechano-Chemical Processes for Sustainable Biomass Conversion, Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
| |
Collapse
|
8
|
Lee B, Kim JG, Pak C. Investigation of fabrication methods for a cathode using a non-precious metal catalyst in polymer electrolyte membrane fuel cell. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0643-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Yang S, Chung Y, Lee KS, Kwon Y. Enhancements in catalytic activity and duration of PdFe bimetallic catalysts and their use in direct formic acid fuel cells. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.07.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Woldetinsay M, Femi O, Soreta TR, Maiyalagan T. Electrocatalytic Investigation of M@Pd (M=Ni, Co, Cu) Core‐Shell Nanostructure Supported on N, S‐Doped Reduced Graphene Oxide towards Hydrogen and Oxygen Evolution Reaction. ChemistrySelect 2020. [DOI: 10.1002/slct.202002200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mengistu Woldetinsay
- Faculty of Material Science and Engineering Jimma Institute of Technology (JIT) Jimma University P.O. Box 378 Jimma Ethiopia
- Department of Chemistry Wollega University P.O. Box 395 Nekemte Ethiopia
| | - Olu Femi
- Faculty of Material Science and Engineering Jimma Institute of Technology (JIT) Jimma University P.O. Box 378 Jimma Ethiopia
| | - Tesfaye R. Soreta
- Center for Materials Engineering Addis Ababa Institute of Technology Addis Ababa University P.O. Box 1176 Addis Ababa Ethiopia
| | - Thandavarayan Maiyalagan
- Electrochemical Energy Laboratory Department of Chemistry SRM Institute of Science and Technology Kattankulathur 603203 India
| |
Collapse
|