1
|
Li T, Guo H, Wang X, Wang H, Liu L, Cui W, Sun X, Liang Y. Loading CuO on the Surface of MgO with Low-coordination Basic O2-Sites for Effective Enhanced CO2Capture and Photothermal Synergistic Catalytic Reduction of CO2to Ethanol. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
2
|
Kim BJ, Park HR, Lee YL, Ahn SY, Kim KJ, Hong GR, Roh HS. Customized Ni-MgO-ZrO2 catalysts for the dry reforming of methane using coke oven gas: Optimizing the MgO content. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
3
|
Gao X, Cai P, Wang Z, Lv X, Kawi S. Surface Acidity/Basicity and Oxygen Defects of Metal Oxide: Impacts on Catalytic Performances of CO2 Reforming and Hydrogenation Reactions. Top Catal 2022. [DOI: 10.1007/s11244-022-01708-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Lee YL, Kim BJ, Park HR, Ahn SY, Kim KJ, Roh HS. Improving the catalytic activity in dry reforming reaction by enhancing the oxygen storage capacity of Ce0.8Zr0.2O2 support through hydrogen heat-treatment. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101903] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
Yoo S, Lee EW, Kim DH. Methane combustion over mesoporous cobalt oxide catalysts: Effects of acid treatment. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
High Active Co/Mg1-xCex3+O Catalyst: Effects of Metal-Support Promoter Interactions on CO2 Reforming of CH4 Reaction. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.1.9969.97-110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Co/Mg1−XCe3+XO (x = 0, 0.03, 0.07, 0.15; 1 wt% cobalt each) catalysts for the dry reforming of methane (DRM) reaction were prepared using the co-precipitation method with K2CO3 as precipitant. Characterization of the catalysts was achieved by X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction (H2-TPR), Brunauer–Emmett–Teller (BET), transmission electron microscopy (TEM), and thermal gravimetric analysis (TGA). The role of several reactant and catalyst concentrations, and reaction temperatures (700–900 °C) on the catalytic performance of the DRM reaction was measured in a tubular fixed-bed reactor under atmospheric pressure at various CH4/CO2 concentration ratios (1:1 to 2:1). Using X-ray diffraction, a surface area of 19.2 m2.g−1 was exhibited by the Co/Mg0.85Ce3+0.15O catalyst and MgO phase (average crystallite size of 61.4 nm) was detected on the surface of the catalyst. H2 temperature programmed reaction revealed a reduction of CoO particles to metallic Co0 phase. The catalytic stability of the Co/Mg0.85Ce3+0.15O catalyst was achieved for 200 h on-stream at 900 °C for the 1:1 CH4:CO2 ratio with an H2/CO ratio of 1.0 and a CH4, CO2 conversions of 75% and 86%, respectively. In the present study, the conversion of CH4 was improved (75%–84%) when conducting the experiment at a lower flow of oxygen (1.25%). Finally, the deposition of carbon on the spent catalysts was analyzed using TEM and Temperature programmed oxidation-mass spectroscopy (TPO-MS) following 200 h under an oxygen stream. Better anti-coking activity of the reduced catalyst was observed by both, TEM, and TPO-MS analysis. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|