1
|
Voicu SI, Vasile E, Palla-Papavlu A, Oprea R, Ionita M, Pandele AM. RUO 2 nanoparticle-decorated MWCNTS synthesized using a sonochemical method as reinforcing agents for PEI composite membranes. RSC Adv 2024; 14:39550-39558. [PMID: 39687339 PMCID: PMC11647773 DOI: 10.1039/d4ra07606k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
This work presents a new and facile synthesis approach for multiwalled carbon nanotubes (MWCNTs) decorated with ruthenium oxide (RuO2) nanoparticles using a simple and efficient sonochemical method. The strong interaction and homogenous distribution of RuO2 nanoparticles on the surface of MWCNTs were revealed by Raman spectroscopy and transmission electron microscopy. The presence of metal oxide nanoparticles anchored onto the surface of MWCNTs was further confirmed by X-ray diffraction and energy-dispersive X-ray analysis. Furthermore, the chemical state of the MWCNTs before and after decoration with RuO2 was revealed by X-ray photoelectron spectroscopy. Scanning electron microscopy illustrated that the decoration process did not induce any modification on the morphology of the surface of MWCNTs. The percentage of RuO2 nanoparticles anchored onto the MWCNT surface was determined by thermogravimetric analysis, where 15% could be calculated considering the weight loss. Furthermore, both MWCNTs and decorated MWCNTs with RuO2 nanoparticles were used as nanofillers to develop some composite membranes using polyetherimine as polymer matrices. The morphological and structural properties of the membranes were characterized by SEM and XRD. The mechanical properties of the composite membranes, contact angle and antimicrobial properties using Escherichia coli and Staphylococcus aureus were also studied.
Collapse
Affiliation(s)
- S I Voicu
- Advanced Polymers Materials Group, National University of Science and Technology POLITEHNICA Bucharest 011061 Bucharest Romania
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology POLITEHNICA Bucharest 011061 Bucharest Romania
| | - E Vasile
- National University of Science and Technology POLITEHNICA Bucharest Splaiul Independentei 313 060042 Bucharest Romania
| | - A Palla-Papavlu
- National Institute for Laser, Plasma and Radiation Physics Str. Atomistilor 409 Magurele 077125 Romania
| | - R Oprea
- Advanced Polymers Materials Group, National University of Science and Technology POLITEHNICA Bucharest 011061 Bucharest Romania
| | - M Ionita
- Advanced Polymers Materials Group, National University of Science and Technology POLITEHNICA Bucharest 011061 Bucharest Romania
| | - A M Pandele
- Advanced Polymers Materials Group, National University of Science and Technology POLITEHNICA Bucharest 011061 Bucharest Romania
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology POLITEHNICA Bucharest 011061 Bucharest Romania
| |
Collapse
|
2
|
Fazekas ÁF, Gyulavári T, Pap Z, Bodor A, Laczi K, Perei K, Illés E, László Z, Veréb G. Effects of Different TiO 2/CNT Coatings of PVDF Membranes on the Filtration of Oil-Contaminated Wastewaters. MEMBRANES 2023; 13:812. [PMID: 37887984 PMCID: PMC10608089 DOI: 10.3390/membranes13100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
Six different TiO2/CNT nanocomposite-coated polyvinylidene-fluoride (PVDF) microfilter membranes (including -OH or/and -COOH functionalized CNTs) were evaluated in terms of their performance in filtering oil-in-water emulsions. In the early stages of filtration, until reaching a volume reduction ratio (VRR) of ~1.5, the membranes coated with functionalized CNT-containing composites provided significantly higher fluxes than the non-functionalized ones, proving the beneficial effect of the surface modifications of the CNTs. Additionally, until the end of the filtration experiments (VRR = 5), notable flux enhancements were achieved with both TiO2 (~50%) and TiO2/CNT-coated membranes (up to ~300%), compared to the uncoated membrane. The irreversible filtration resistances of the membranes indicated that both the hydrophilicity and surface charge (zeta potential) played a crucial role in membrane fouling. However, a sharp and significant flux decrease (~90% flux reduction ratio) was observed for all membranes until reaching a VRR of 1.1-1.8, which could be attributed to the chemical composition of the oil. Gas chromatography measurements revealed a lack of hydrocarbon derivatives with polar molecular fractions (which can act as natural emulsifiers), resulting in significant coalescent ability (and less stable emulsion). Therefore, this led to a more compact cake layer formation on the surface of the membranes (compared to a previous study). It was also demonstrated that all membranes had excellent purification efficiency (97-99.8%) regarding the turbidity, but the effectiveness of the chemical oxygen demand reduction was slightly lower, ranging from 93.7% to 98%.
Collapse
Affiliation(s)
- Ákos Ferenc Fazekas
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
- Doctoral School of Environmental Sciences, University of Szeged, Rerrich Béla Sq. 1, H-6720 Szeged, Hungary
| | - Tamás Gyulavári
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla Sq. 1, H-6720 Szeged, Hungary
| | - Zsolt Pap
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla Sq. 1, H-6720 Szeged, Hungary
- Centre of Nanostructured Materials and Bio-Nano Interfaces, Institute for Interdisciplinary, Research on Bio-Nano-Sciences, Treboniu Laurian 42, RO-400271 Cluj-Napoca, Romania
- STAR-UBB Institute, Mihail Kogălniceanu 1, RO-400084 Cluj-Napoca, Romania
| | - Attila Bodor
- Department of Biotechnology, Institute of Biology, University of Szeged, Közép Alley 52, H-6726 Szeged, Hungary
- Institute of Biophysics, Biological Research Centre, Hungarian Research Network, Temesvári Blvd. 62, H-6726 Szeged, Hungary
| | - Krisztián Laczi
- Department of Biotechnology, Institute of Biology, University of Szeged, Közép Alley 52, H-6726 Szeged, Hungary
| | - Katalin Perei
- Department of Biotechnology, Institute of Biology, University of Szeged, Közép Alley 52, H-6726 Szeged, Hungary
| | - Erzsébet Illés
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Mars Sq. 7, H-6724 Szeged, Hungary
| | - Zsuzsanna László
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
| | - Gábor Veréb
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
| |
Collapse
|
3
|
Fekete L, Fazekas ÁF, Hodúr C, László Z, Ágoston Á, Janovák L, Gyulavári T, Pap Z, Hernadi K, Veréb G. Outstanding Separation Performance of Oil-in-Water Emulsions with TiO 2/CNT Nanocomposite-Modified PVDF Membranes. MEMBRANES 2023; 13:209. [PMID: 36837714 PMCID: PMC9964517 DOI: 10.3390/membranes13020209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Membrane filtration is an effective technique for separating micro- and nano-sized oil droplets from harmful oil-contaminated waters produced by numerous industrial activities. However, significant flux reduction discourages the extensive application of this technology; therefore, developing antifouling membranes is necessary. For this purpose, various titanium dioxide/carbon nanotube (TiO2/CNT) nanocomposites (containing 1, 2, and 5 wt.% multi-walled CNTs) were used for the modification of polyvinylidene fluoride (PVDF) ultrafilter (250 kDa) membrane surfaces. The effects of surface modifications were compared in relation to the flux, the filtration resistance, the flux recovery ratio, and the purification efficiency. TiO2/CNT2% composite modification reduced both irreversible and total filtration resistances the most during the filtration of 100 ppm oil emulsions. The fluxes were approximately 4-7 times higher compared to the unmodified PVDF membrane, depending on the used transmembrane pressure (510, 900, and 1340 L/m2h fluxes were measured at 0.1, 0.2, and 0.3 MPa pressures, respectively). Moreover, the flux recovery ratio (up to 68%) and the purification efficiency (95.1-99.8%) were also significantly higher because of the surface modification, and the beneficial effects were more dominant at higher transmembrane pressures. TiO2/CNT2% nanocomposites are promising to be applied to modify membranes used for oil-water separation and achieve outstanding flux, cleanability, and purification efficiency.
Collapse
Affiliation(s)
- Laura Fekete
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
| | - Ákos Ferenc Fazekas
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
| | - Cecilia Hodúr
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
| | - Zsuzsanna László
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
| | - Áron Ágoston
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla Sqr. 1, H-6720 Szeged, Hungary
| | - László Janovák
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla Sqr. 1, H-6720 Szeged, Hungary
| | - Tamás Gyulavári
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla sq. 1, H-6720 Szeged, Hungary
| | - Zsolt Pap
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla sq. 1, H-6720 Szeged, Hungary
| | - Klara Hernadi
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla sq. 1, H-6720 Szeged, Hungary
- Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, Miskolc-Egyetemváros, C/1 108, H-3515 Miskolc, Hungary
| | - Gábor Veréb
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
| |
Collapse
|
4
|
Oil/water separation membranes with stable ultra-high flux based on the self-assembly of heterogeneous carbon nanotubes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Park CH, Go EM, Lee KM, Lee CS, Kwak SK, Kim JH. Substrate-independent three-dimensional polymer nanosheets induced by solution casting. Chem Sci 2021; 12:11748-11755. [PMID: 34659711 PMCID: PMC8442678 DOI: 10.1039/d1sc03232a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/02/2021] [Indexed: 11/30/2022] Open
Abstract
Nanosheets are important structures usually composed of inorganic materials, such as metals, metal oxides, and carbon. Their creation typically involves hydrothermal, electrochemical or microwave processes. In this study, we report a novel formation mechanism of 3D polymer nanosheets via facile solution casting using a comb copolymer consisting of poly(ethylene glycol) behenyl ether methacrylate and poly(oxyethylene) methacrylate (PEGBEM–POEM). Controlling the composition of comb copolymer yielded nanosheets with different packing density and surface coverage. Interestingly, the structure exhibits substrate independence as confirmed by glass, inorganic wafer, organic filter paper, and porous membrane. The formation of 3D nanosheets was investigated in detail using coarse-grained molecular dynamics simulations. The obtained polymer nanosheets were further utilized as templates for inorganic nanosheets, which exhibit high conductivity owing to interconnectivity, and hence have promising electronic and electrochemical applications. Unprecedented substrate-independent polymeric 3D nanosheets were induced via simple solution casting using PEGBEM–POEM comb copolymer. A possible mechanism is the change in the polymer–solvent interactions on the surface.![]()
Collapse
Affiliation(s)
- Cheol Hun Park
- Department of Chemical and Biomolecular Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
| | - Eun Min Go
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Kyung Min Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Chang Soo Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
| | - Sang Kyu Kwak
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Jong Hak Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
| |
Collapse
|