1
|
Sadeghy S, Pormazar SM, Ghaneian MT, Ehrampoush MH, Dalvand A. Modeling and optimization of direct dyes removal from aqueous solutions using activated carbon produced from sesame shell waste. Sci Rep 2024; 14:24867. [PMID: 39438688 PMCID: PMC11496657 DOI: 10.1038/s41598-024-76081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Today, there is a significant concern in the industry regarding the disposal of wastewater containing dyes into the environment, so the management and appropriate disposal of these wastes in the environment are considerable. The main aim of this study is to assess the efficiency of activated carbon (AC) prepared from sesame shells to remove direct dyes from aqueous solutions. According to the results, AC prepared from sesame shell had a high specific surface area (525 m2/g) and porous structure. The results demonstrated that the adsorbent had high potential to remove direct dyes as 84.5% of direct brown 103 (DB103), 93.08% of direct red 80 (DR80), 93.37% of direct blue 21 (DB21) and 98.39% of direct blue 199 (DB199) under the optimal conditions of adsorbent dose 4.8 g/L, contact time 19 min, pH 3 and initial dye concentration 12 mg/L. The experimental results showed that kinetic data were best described by the pseudo-second-order model (R2 = 0.989) while isotherm data were best fitted by the Freundlich model (R2 = 0.994). In the present study, not only was the produced waste used as a useful and economically valuable material, but it was also applied as an effective adsorbent to remove direct dyes from industrial effluents and reduce environmental pollution.
Collapse
Grants
- 13947 Shahid Sadoughi University of Medical Sciences, Iran, Islamic Republic Of
- 13947 Shahid Sadoughi University of Medical Sciences, Iran, Islamic Republic Of
- 13947 Shahid Sadoughi University of Medical Sciences, Iran, Islamic Republic Of
- 13947 Shahid Sadoughi University of Medical Sciences, Iran, Islamic Republic Of
- 13947 Shahid Sadoughi University of Medical Sciences, Iran, Islamic Republic Of
Collapse
Affiliation(s)
- Setareh Sadeghy
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedeh Mahtab Pormazar
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Taghi Ghaneian
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hassan Ehrampoush
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Arash Dalvand
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
2
|
Keshavarzi F, Samaei MR, Hashemi H, Azhdarpoor A, Mohammadpour A. Application of montmorillonite/octadecylamine nanoparticles in the removal of textile dye from aqueous solutions: Modeling, kinetic, and equilibrium studies. Heliyon 2024; 10:e25919. [PMID: 38404893 PMCID: PMC10884807 DOI: 10.1016/j.heliyon.2024.e25919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/27/2024] Open
Abstract
In the study, the proliferation of industries has been associated with an increase in the production of industrial wastewater and subsequent environmental pollution, wherein dyes emerge as prominent pollutants. The characteristics of nanoclay modified with octadecylamine, were elucidated throughvarious techniques, including Field Emission Scanning Electron Microscopy/Energy Dispersive Spectroscopy (FE-SEM/EDS), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), X-ray Diffraction (XRD), and Brunauer-Emmett-Teller Surface Area Analysis (BET). The research delved into the impact of variables such as pH, initial dye concentration, adsorbent dose, temperature, and ultrasonication time on the removal of Acid Black 1 (AB1) through an ultrasonic process, employing a central composite design (CCD). Optimal conditions for the adsorption process were determined: pH at 5.46, adsorbent mass at 4 mg/30 mL, initial dye concentration at 20 mg/L, ultrasound time at 20 min, and temperature at 50 °C, resulting in a remarkable 96.49% adsorption efficiency. The fitting of experimental equilibrium data to different isotherm models, including Langmuir, Freundlich, and Temkin, indicated thatthe Freundlich model was the most suitable. Analysis of the adsorption data with various kinetic models such as pseudo-first and second-order models, and intraparticle diffusion models, revealed the applicability of the second-order equation model. A thermodynamic study unveiled that the adsorption process was spontaneous and endothermic. In conclusion, the study highlights the significant capability ofmontmorillonite nanoclay modified with octadecylamine in removing AB1 dye, rendering it a viable option for wastewater treatment.
Collapse
Affiliation(s)
- Fatemeh Keshavarzi
- Department of Environmental Health Engineering, School of Public Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Samaei
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Hashemi
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abooalfazl Azhdarpoor
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Mohammadpour
- Department of Environmental Health Engineering, School of Public Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Deng Z, Luo Y, Bian M, Guo X, Zhang N. Synthesis of easily renewable and recoverable magnetic PEI-modified Fe 3O 4 nanoparticles and its application for adsorption and enrichment of tungsten from aqueous solutions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121703. [PMID: 37094732 DOI: 10.1016/j.envpol.2023.121703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Tungsten is a hazardous metal to human health and the environment, but it is also valuable. Previous studies have been limited to the adsorption and removal of tungsten, without considering its recovery and utilization. In this article, a renewable magnetic material, Fe3O4 nanoparticles coated by polyethyleneimine (Fe3O4@PEI NPs), is synthesized and used for the adsorption of tungsten in water. Tungsten adsorption experiments were conducted under different initial tungsten concentrations, contact times, solution pH values, and co-existing anions. The results show that Fe3O4@PEI NPs efficiently and rapidly adsorb tungsten from water, with a maximum adsorption capacity of 43.24 mg/g. Under acidic conditions (pH ∼2), the adsorption performance of the NPs maximized. This is because tungstate ions polymerize under such conditions to form polytungstic anions. These are attracted to the positively charged surface of Fe3O4@PEI NPs by electrostatic attraction, followed by complexation reactions with the surface hydroxyl and amino groups of NPs, as evidenced by multiple spectroscopic methods. The NPs can be recovered and renewed and provide a potential application for the enrichment and recycling of high-value tungsten (W(VI)).
Collapse
Affiliation(s)
- Zien Deng
- College of Science and College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, PR China
| | - Yong Luo
- College of Science and College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, PR China
| | - Miao Bian
- College of Science and College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, PR China
| | - Xin Guo
- College of Science and College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, PR China
| | - Ning Zhang
- College of Science and College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, PR China.
| |
Collapse
|
4
|
Nguyen VT, Ha LQ, Nguyen TDL, Ly PH, Nguyen DM, Hoang D. Nanocellulose and Graphene Oxide Aerogels for Adsorption and Removal Methylene Blue from an Aqueous Environment. ACS OMEGA 2022; 7:1003-1013. [PMID: 35036764 PMCID: PMC8756800 DOI: 10.1021/acsomega.1c05586] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/08/2021] [Indexed: 05/12/2023]
Abstract
The characteristics of aerogel materials such as the low density and large surface area enable them to adsorb large amounts of substances, so they show great potential for application in industrial wastewater treatment. Herein, using a combination of completely environmentally friendly materials such as cellulose nanofibers (CNFs) extracted from the petioles of the nipa palm tree and graphene oxide (GO) fabricated by simple solvent evaporation, a composite aerogel was prepared by a freeze-drying method. The obtained aerogel possessed a light density of 0.0264 g/cm3 and a porosity of more than 98.2%. It was able to withstand a weight as much as 2500 times with the maximum force (1479.5 N) to break up 0.2 g of an aerogel by compression strength testing and was stable in the aquatic environment, enabling it to be reused five times with an adsorption capacity over 90%. The CNF/GO aerogel can recover higher than 85% after 30 consecutive compression recovery cycles, which is convenient for the reusability of this material in wastewater treatments. The obtained aerogel also showed a good interaction between the component phases, a high thermal stability, a 3D network structure combined with thin walls and pores with a large specific surface area. In addition, the aerogel also exhibited a fast adsorption rate for methylene blue (MB) adsorption, a type of waste from the textile industry that pollutes water sources, and it can adsorb more than 99% MB in water in less than 20 min. The excellent adsorption of MB onto the CNF/GO aerogel was driven by electrostatic interactions, which agreed with the pseudo-second-order kinetic model with a correlation coefficient R 2 = 0.9978. The initial results show that the CNF/GO aerogel is a highly durable "green" light material that might be applied in the treatment of domestic organic waste water and is completely recoverable and reusable.
Collapse
Affiliation(s)
- Vy T. Nguyen
- Faculty
of Materials Science and Technology, University
of Science, Ho Chi
Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi Minh
City 700000, Vietnam
| | - Lam Q. Ha
- Faculty
of Applied Sciences, HCMC University of
Technology and Education, Ho Chi
Minh City 700000, Vietnam
| | - Tu D. L. Nguyen
- Faculty
of Materials Science and Technology, University
of Science, Ho Chi
Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi Minh
City 700000, Vietnam
| | - Phuong H. Ly
- Faculty
of Materials Science and Technology, University
of Science, Ho Chi
Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi Minh
City 700000, Vietnam
| | - Dang Mao Nguyen
- Faculty
of Materials Science and Technology, University
of Science, Ho Chi
Minh City 700000, Vietnam
- Laboratoire
Innovation Matériau Bois Habitat Apprentissage (LIMBHA), Ecole Supérieure du Bois, 7 Rue Christian Pauc, 44306 Nantes, France
| | - DongQuy Hoang
- Faculty
of Materials Science and Technology, University
of Science, Ho Chi
Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi Minh
City 700000, Vietnam
| |
Collapse
|
5
|
Manna S, Das P, Basak P, Sharma AK, Singh VK, Patel RK, Pandey JK, Ashokkumar V, Pugazhendhi A. Separation of pollutants from aqueous solution using nanoclay and its nanocomposites: A review. CHEMOSPHERE 2021; 280:130961. [PMID: 34162115 DOI: 10.1016/j.chemosphere.2021.130961] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/17/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Wastewater is always composed of different pollutants, most of which are toxic to the living being. It is very tough to separate all those diverse groups of contaminants using a single process or single material. Rather a sustainable and environment friendly processes should be adapted to restrict the secondary pollution generation. Nanoclay and its nanocomposites are one of the most used adsorbents that have been modified and used for the separation of almost all types of pollutants, including dyes, heavy metals, fluoride, nitrate, ammonia, emerging pollutants and bacteria. They are relatively inexpensive, easy to exploit and relatively maintenance-free. Thus, recent research bloomed for developing suitable adsorbents, including clay nanocomposites. The advantages and drawbacks of all the clay nanocomposites-based processes have been discussed critically in this article. Nano-clays or other nanoparticles incorporated synthetic and natural polymers-based clay nanocomposites were synthesized, and it was found that they can remove dyes in the range between 48 mg/g and 1994 mg/g. Similarly, they separate a diverse group of heavy metal ions, including As, Cu, Co, Pd, Zn, Cr, Ni, Cd, and Hg, in the range of 0.073-1667 mg/g. The clay nanocomposites also showed fluoride removal efficacy in the range of 0.134-23 mg/g. They are also useful for the separation of emerging pollutants like pesticides, pharmaceuticals, personal care products, trace elements, and particulate matters in the range of 0.1-651 mg/g the clay nanocomposites showed considerable nitrate, ammonia and bacteria removal efficacy too. Though it seems promising, more investigations with real wastewater and pilot-scale studies are recommended to explore large-scale wastewater treatment capabilities.
Collapse
Affiliation(s)
- Suvendu Manna
- School of Engineering, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Dehradun, Uttarakhand, 248007, India.
| | - Pratik Das
- School of Bioscience and Engineering, Jadavpur University, Kolkata, WB, 700032, India
| | - Piyali Basak
- School of Bioscience and Engineering, Jadavpur University, Kolkata, WB, 700032, India
| | - Amit Kumar Sharma
- School of Engineering, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Dehradun, Uttarakhand, 248007, India.
| | - Vishal Kumar Singh
- School of Engineering, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Dehradun, Uttarakhand, 248007, India
| | - Ravi Kumar Patel
- School of Engineering, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Dehradun, Uttarakhand, 248007, India
| | - Jitendra Kumar Pandey
- School of Engineering, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Dehradun, Uttarakhand, 248007, India
| | - Veeramuthu Ashokkumar
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai, 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|