1
|
Altalhi T, Jethave G, Fegade U, Mersal GAM, Ibrahim MM, Mahmoud M, Kumeria T, Isai KA, Sonawane M. Adsorption of Magenta Dye on PbO Doped MgZnO: Interpretation of Statistical Physics Parameters Using Double-Layer Models. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912199. [PMID: 36231501 PMCID: PMC9564486 DOI: 10.3390/ijerph191912199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/02/2023]
Abstract
This article reports the synthesis of PbO doped MgZnO (PbO@MgZnO) by a co-precipitation method, followed by an ultrasonication process. PbO@MgZnO demonstrates a significant adsorption capability toward Magenta Dye (MD). The greatest adsorption capability was optimized by varying parameters such as pH, MD concentration, and adsorbent dose. The kinetics study illustrates that the adsorption of MD on PbO@MgZnO follows the pseudo-second-order. The isotherm study revealed that Langmuir is best fitted for the adsorption, but with little difference in the R2 value of Langmuir and Freundlich, the adsorption process cloud be single or multi-layer. The maximum adsorption capacity was found to be 333.33 mg/g. The negative ΔG refers to the spontaneity of MD adsorption on PbO@MgZnO. The steric parameters from statistical physics models also favor the multi-layer adsorption mechanism. As a function of solution temperature, the parameter n pattern has values of n = 0.395, 0.290, and 0.280 for 298, 308, and 318 K, respectively (i.e., all values were below 1). Therefore, horizontal molecule positioning and multiple locking mechanisms were implicated during interactions between MD and PbO@MgZnO active sites.
Collapse
Affiliation(s)
- Tariq Altalhi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ganesh Jethave
- Department of Chemistry, Dr. Annasaheb G. D. Bendale Mahila Mahavidyalaya, Jalgaon 425001, Maharashtra, India
| | - Umesh Fegade
- Department of Chemistry, Bhusawal Arts, Science and P. O. Nahata Commerce College, Bhusawal 425201, Maharashtra, India
| | - Gaber A. M. Mersal
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed M. Ibrahim
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - M.H.H. Mahmoud
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Tushar Kumeria
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Kalpesh A. Isai
- Department of Applied Science and Humanities, R. C. Patel Institute of Technology, Shirpur 425405, Maharashtra, India
| | - Milind Sonawane
- Department of Applied Science and Humanities, R. C. Patel Institute of Technology, Shirpur 425405, Maharashtra, India
| |
Collapse
|
2
|
Niu X, Liu C, Li L, Han X, Chang C, Li P, Chen J. High specific surface area N-doped activated carbon from hydrothermal carbonization of shaddock peel for the removal of norfloxacin from aqueous solution. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:2964-2979. [PMID: 35638799 DOI: 10.2166/wst.2022.163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A novel N-doped activated carbon (NAC) derived from shaddock peel was investigated to remove norfloxacin (NFX) from aqueous solution. The Box-Behnken central composite design (BBD) was used to optimize the preparation conditions of NAC. The specific surface area of NAC was 2,481.81 m2 g-1, which was obtained at 1,106 K activation temperature, 2.4 h residence time, and 2.3:1 mass ratio of KOH to hydrochar. Moreover, the equilibrium data were perfectly represented by Langmuir and Koble-Corrigan isotherms, and the adsorption process was precisely described by the pseudo-second-order kinetic model. Besides, the adsorption of NFX on NAC was mainly controlled by π-π electron-donor-acceptor (EDA) interaction, hydrophobic effect, hydrogen-bonding, electrostatic interaction and Lewis acid-base effect. The maximum monolayer adsorption capacity of NFX was 746.29 mg g-1 at 298 K, implying that NAC was a promising adsorbent for the removal of NFX from aqueous solution.
Collapse
Affiliation(s)
- Xinyong Niu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China E-mail:
| | - Chenglin Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China E-mail:
| | - Lin Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China E-mail:
| | - Xiuli Han
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China E-mail:
| | - Chun Chang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China E-mail:
| | - Pan Li
- School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Junying Chen
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China E-mail:
| |
Collapse
|