1
|
Compagnone M, González-Cortés JJ, Pilar Yeste M, Cantero D, Ramírez M. Sustainable Recovery of Platinum Group Metals from Spent Automotive Three-Way Catalysts through a Biogenic Thiosulfate-Copper-Ammonia System. Molecules 2023; 28:8078. [PMID: 38138568 PMCID: PMC10746061 DOI: 10.3390/molecules28248078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
This study explores an eco-friendly method for recovering platinum group metals from a synthetic automotive three-way catalyst (TWC). Bioleaching of palladium (Pd) using the thiosulfate-copper-ammonia leaching processes, with biogenic thiosulfate sourced from a bioreactor used for biogas biodesulfurization, is proposed as a sustainable alternative to conventional methods. Biogenic thiosulfate production was optimized in a gas-lift bioreactor by studying the pH (8-10) and operation modes (batch and continuous) under anoxic and microaerobic conditions for 35 d. The maximum concentration of 4.9 g S2O32- L-1 of biogenic thiosulfate was reached under optimal conditions (batch mode, pH = 10, and airflow rate 0.033 vvm). To optimize Pd bioleaching from a ground TWC, screening through a Plackett-Burman design determined that oxygen and temperature significantly affected the leaching yield negatively and positively, respectively. Based on these results, an optimization through an experimental design was performed, indicating the optimal conditions to be Na2S2O3 1.2 M, CuSO4 0.03 M, (NH4)2SO4 1.5 M, Na2SO3 0.2 M, pH 8, and 60 °C. A remarkable 96.2 and 93.2% of the total Pd was successfully extracted from the solid at 5% pulp density using both commercially available and biogenic thiosulfate, highlighting the method's versatility for Pd bioleaching from both thiosulfate sources.
Collapse
Affiliation(s)
- Mariacristina Compagnone
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO), Faculty of Sciences, University of Cadiz, Puerto Real, 11510 Cadiz, Spain; (M.C.); (M.R.)
| | - José Joaquín González-Cortés
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO), Faculty of Sciences, University of Cadiz, Puerto Real, 11510 Cadiz, Spain; (M.C.); (M.R.)
| | - María Pilar Yeste
- Department of Material Science, Metallurgical Engineering and Inorganic Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, University of Cadiz, Puerto Real, 11510 Cadiz, Spain
| | - Domingo Cantero
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO), Faculty of Sciences, University of Cadiz, Puerto Real, 11510 Cadiz, Spain; (M.C.); (M.R.)
| | - Martín Ramírez
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO), Faculty of Sciences, University of Cadiz, Puerto Real, 11510 Cadiz, Spain; (M.C.); (M.R.)
| |
Collapse
|
2
|
Deng H, Liu C, Xu X, Wu Y, Chen M, Huang Z. Separation of Palladium from Alkaline Cyanide Solutions through Microemulsion Extraction Using Imidazolium Ionic Liquids. Int J Mol Sci 2023; 24:10709. [PMID: 37445887 DOI: 10.3390/ijms241310709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
In this paper, three imidazolium-based ionic liquids, viz., 1-butyl-3-undecyl imidazolium bromide ([BUIm]Br), 1-butyl-3-octyl imidazolium bromide ([BOIm]Br), and 1-butyl-3-hexadecyl imidazolium bromide ([BCIm]Br), were synthesized. Three novel microemulsions systems were constructed and then were used to recover Pd (II) from cyanide media. Key extraction parameters such as the concentration of ionic liquids (ILs), equilibration time, phase ratio (RA/O), and pH were evaluated. The [BUIm]Br/n-heptane/n-pentanol/sodium chloride microemulsion system exhibited a higher extraction percentage of Pd (II) than the [BOIm]Br/n-heptane/n-pentanol/sodium chloride and [BCIm]Br/n-heptane/n-pentanol/sodium chloride microemulsion systems. Under the optimal conditions (equilibrium time of 10 min and pH 10), the extraction percentages of these metals were all higher than 98.5% when using the [BUIm]Br/n-heptane/n-pentanol/sodium chloride microemulsion system. Pd(CN)42- was separated through a two-step stripping procedure, in which Fe (III) and Co (III) were first separated using KCl solution, then Pd(CN)42- was stripped using KSCN solution (separation factors of Pd from Fe and Co exceeded 103). After five extraction-recovery experiments, the recovery of Pd (II) through the microemulsion system remained over 90%. The Pd (II) extraction mechanism of the ionic liquid [BUIm]Br was determined to occur via anion exchange, as shown by spectral analysis (UV, FTIR), Job's method, and DFT calculations. The proposed process has potential applications for the comprehensive treatment of cyanide metallurgical wastewater.
Collapse
Affiliation(s)
- Hui Deng
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Chali Liu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xin Xu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yuanyuan Wu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Muhan Chen
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Zhangjie Huang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| |
Collapse
|
3
|
Liu M, Zhao Y, Cheng Q, Tian B, Tian M, Zhang J, Zhang H, Xue T, Qi T. High-value utilisation of PGM-containing residual oil: Recovery of inorganic acids, potassium, and PGMs using a zero-waste approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117599. [PMID: 36898239 DOI: 10.1016/j.jenvman.2023.117599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Residual oil containing platinum group metals (PGMs), which is under-researched, can easily pose resource waste and environmental risks. PGMs feature as scarce strategic metals, and inorganic acids and potassium salts are also considered valuable. An integrated process for the harmless treatment and recovery of useful resources from residual oil is proposed herein. This work developed a zero-waste process based on the study of the main components and characteristics of the PGM-containing residual oil. The process consists of three modules: pre-treatment for phase separation, liquid-phase resource utilisation, and solid-phase resource utilisation. Separating the residual oil into liquid and solid phases allows for the maximum recovery of valuable components. However, concerns about the accurate determination of valued components emerged. Findings revealed that Fe and Ni are highly susceptible to spectral interference in the PGMs test when using the inductively coupled plasma method. After studying 26 PGM emission lines, Ir 212.681 nm, Pd 342.124 nm, Pt 299.797 nm, and Rh 343.489 nm were reliably identified. Finally, formic acid (81.5 g/t), acetic acid (117.2 kg/t), propionic acid (291.9 kg/t), butyric acid (3.6 kg/t), potassium salt (553.3 kg/t), Ir (27.8 g/t), Pd (10960.0 g/t), Pt (193.1 g/t), and Rh (109.8 g/t) were successfully obtained from the PGM-containing residual oil. This study provides a helpful reference for the determination of PGM concentrations and high-value utilisation of PGM-containing residual oil.
Collapse
Affiliation(s)
- Minghui Liu
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 101408, China; National Engineering Research Center of Green Recycling for Trategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yutong Zhao
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 101408, China; Fuel Cell System and Engineering Laboratory, Key Laboratory of Fuel Cells & Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Quanzhong Cheng
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 101408, China; National Engineering Research Center of Green Recycling for Trategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bingyang Tian
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 101407, China
| | - Ming Tian
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 101408, China; National Engineering Research Center of Green Recycling for Trategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jian Zhang
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 101408, China; National Engineering Research Center of Green Recycling for Trategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hui Zhang
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 101408, China; National Engineering Research Center of Green Recycling for Trategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Tianyan Xue
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 101408, China; National Engineering Research Center of Green Recycling for Trategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Tao Qi
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 101408, China; National Engineering Research Center of Green Recycling for Trategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China.
| |
Collapse
|
4
|
Sun S, Jin C, Zhao W, He W, Li G, Zhu H, Huang J. Process and mechanism of enhanced HCl leaching of platinum group metals from waste three-way catalysts by Li 2CO 3 calcination pretreatment. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131348. [PMID: 37027921 DOI: 10.1016/j.jhazmat.2023.131348] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/09/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Recovery of platinum group metals (PGMs) from waste three-way catalysts (TWCs) was usually achieved by dissolving them in an acid solution. However, their dissolution requires the addition of oxidizing agents such as Cl2 and aqua regia, which could cause high environmental risks. Therefore, the development of new methods without the addition of oxidant agents will contribute to the green recovery of PGMs. In this paper, the process and mechanism of PGMs recovery from waste TWCs by Li2CO3 calcination pretreatment-HCl leaching were studied in detail, and molecular dynamics calculations were performed for the formation processes of Pt, Pd, and Rh complex oxides. The results showed that the leaching rates of Pt, Pd, and Rh could reach about 95%, 98%, and 97%, respectively, under the optimal conditions. Li2CO3 calcination pretreatment cannot only oxidize Pt, Pd, and Rh metals to HCl-soluble Li2PtO3, Li2PdO2, and Li2RhO3, but also remove the carbon accumulation in waste TWCs and open the wrapping of PGMs by the substrate and Al2O3 coating. The embedding of Li and O atoms in metallic Pt, Pd, and Rh is an interacting embedding process. Although the Li atoms are faster than O, O will accumulate on the metal surface first before embedding.
Collapse
Affiliation(s)
- Shiqiang Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, PR China; School of Environmental Science and Engineering, Tongji University, Shanghai, PR China
| | - Chenxi Jin
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, PR China; School of Environmental Science and Engineering, Tongji University, Shanghai, PR China
| | - Wenting Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, PR China; School of Environmental Science and Engineering, Tongji University, Shanghai, PR China
| | - Wenzhi He
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, PR China; School of Environmental Science and Engineering, Tongji University, Shanghai, PR China.
| | - Guangming Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, PR China; School of Environmental Science and Engineering, Tongji University, Shanghai, PR China
| | - Haochen Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, PR China; School of Environmental Science and Engineering, Tongji University, Shanghai, PR China
| | - Juwen Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, PR China; School of Environmental Science and Engineering, Tongji University, Shanghai, PR China
| |
Collapse
|
5
|
Recovery of Platinum Group Metals from Leach Solutions of Spent Catalytic Converters Using Custom-Made Resins. MINERALS 2022. [DOI: 10.3390/min12030361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Platinum group metals (PGMs) play a key role in modern society as they find application in clean technologies and other high-tech equipment. Spent catalytic converters as a secondary resource contain higher PGM concentrations and the recovery of these metals via leaching is continuously being improved but efforts are also directed at the purification of individual metal ions. The study presents the recovery of PGMs, namely, rhodium (Rh), platinum (Pt) and palladium (Pd) as well as base metals, namely, zinc (Zn), nickel (Ni), iron (Fe), manganese (Mn) and chromium (Cr) using leachates from spent diesel and petrol catalytic converters. The largest amount of Pt was leached from the diesel catalytic converter while the petrol gave the highest amount of Pd when leached with aqua regia. Merrifield beads (M) were functionalized with triethylenetetramine (TETA), ethane-1,2-dithiol (SS) and bis((1H-benzimidazol-2-yl)methyl)sulfide (NSN) to form M-TETA, M-SS and M-NSN, respectively, for recovery of PGMs and base metals from the leach solutions. The adsorption and loading capacities of the PGMs and base metals were investigated using column studies at 1 M HCl concentration. The loading capacity was observed in the increasing order of Pd to be 64.93 mmol/g (M-SS), 177.07 mmol/g (M-NSN), and 192.0 mmol/g (M-TETA), respectively, from a petrol catalytic converter. The M-NSN beads also had a much higher loading capacity for Fe (489.55 mmol/g) compared to other base metals. The finding showed that functionalized Merrifield resins were effective for the simultaneous recovery of PGMs and base metals from spent catalytic converters.
Collapse
|