1
|
Zakaria D, Yamashita T, Kosugi Y. Multi-Omics Analysis of Hippocampus in Rats Administered Trimethyltin Chloride. Neurotox Res 2025; 43:13. [PMID: 40095120 PMCID: PMC11914309 DOI: 10.1007/s12640-025-00737-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025]
Abstract
Trimethyltin chloride (TMT) is a neurotoxicant that damages the central nervous system (CNS) and triggers neurodegeneration. This study used multi-omic data, including transcriptomics and proteomics of the rat hippocampus, to identify differentially expressed genes and proteins in TMT-induced neurotoxicity over time, related to neuro-axonal damage marked by plasma Neurofilament Light (NfL) levels. Data were collected at 12, 24, 48, 72, and 168 h post-TMT administration. NfL levels surged at 72 and 168 h, confirming neuro-axonal damage. Transcripts of genes in the chemokine signaling pathway (Cxcl10, Cxcl12, Cxcl14, Cxcl16), apoptosis pathway (Caspase-3, PARP1, CTSD), and TNF signaling pathway (TNFR1, MMP9, ICAM-1, TRAF3) showed significant differential expression starting from 48 h, preceding the NfL increase, suggesting their roles in neuro-axonal damage. Additionally, 11 Alzheimer's disease-related proteins, with significant changes from 72 to 168 h, were detected only in the proteomic dataset, indicating post-translational modifications might be crucial in neurotoxicity. Pathway analysis revealed that neurodegeneration and Alzheimer's disease pathways were among the top 15 affected by TMT-induced gene regulation, aligning with the involvement of TNF signaling, apoptosis, and chemokine signaling in neurodegeneration. This research highlighted the value of longitudinal omics studies, combined with pathway enrichment, gene-disease association, and neuro-axonal damage biomarker analyses, to elucidate neurotoxicant-induced neurodegeneration. Findings from this study could enhance the understanding of TMT-induced neurotoxicity, potentially informing future therapeutic strategies and preventive measures.
Collapse
Affiliation(s)
- Douaa Zakaria
- DMPK&Modeling, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Miura, Kanagawa, Japan
| | - Tomoki Yamashita
- DMPK&Modeling, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Yohei Kosugi
- DMPK&Modeling, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan.
| |
Collapse
|
2
|
Deng Y, Ma L, Du Z, Ma H, Xia Y, Ping L, Chen Z, Zhang Y. The Notch1/Hes1 pathway regulates Neuregulin 1/ErbB4 and participates in microglial activation in rats with VPA-induced autism. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110947. [PMID: 38242426 DOI: 10.1016/j.pnpbp.2024.110947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
The core clinical characteristics of autism, which is a neurodevelopmental disease, involve repetitive behavior and impaired social interactions. Studies have shown that the Notch and Neuregulin1 (NRG1) signaling pathways are abnormally activated in autism, but the mechanism by which these two signaling pathways interact to contribute to the progression of autism has not been determined. Our results suggest that the levels of Notch1, Hes1, NRG1, and phosphorylated ErbB4 in the cerebellum (CB), hippocampus (HC), and prefrontal cortex (PFC) were increased in rats with valproic acid (VPA)-induced autism compared to those in the Con group. However, 3, 5-difluorophenyl-L-alanyl-L-2-phenylglycine tert-butyl (DAPT), which is a Notch pathway inhibitor, ameliorated autism-like behavioral abnormalities and decreased the protein levels of NRG1 and phosphorylated ErbB4 in rats with VPA-induced autism; these results demonstrated that the Notch1/Hes1 pathway could participate in the pathogenesis of autism by regulating the NRG1/ErbB4 signaling pathway. Studies have shown that the Notch pathway regulates microglial differentiation and activation during the onset of neurological disorders and that microglia affect autism-like behavior via synaptic pruning. Therefore, we hypothesized that the Notch1/Hes1 pathway could regulate the NRG1/ErbB4 pathway and thus participate in the development of autism by regulating microglial functions. The present study showed that AG1478, which is an ErbB4 inhibitor, ameliorated the autism-like behaviors in a VPA-induced autism rat model, reduced abnormal microglial activation, and decreased NRG1 and Iba-1 colocalization; however, AG1478 did not alter Notch1/Hes1 activity. These results demonstrated that Notch1/Hes1 may participate in the microglial activation in autism by regulating NRG1/ErbB4, revealing a new mechanism underlying the pathogenesis of autism.
Collapse
Affiliation(s)
- Yanan Deng
- Department of Human Anatomy & Histoembryology, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan 453003, China
| | - Liping Ma
- Department of Human Anatomy & Histoembryology, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan 453003, China
| | - Ziwei Du
- Department of Human Anatomy & Histoembryology, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan 453003, China
| | - Huixin Ma
- Department of Human Anatomy & Histoembryology, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan 453003, China
| | - Yuxi Xia
- Department of Human Anatomy & Histoembryology, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan 453003, China
| | - Liran Ping
- Department of Human Anatomy & Histoembryology, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan 453003, China
| | - Zhaoxing Chen
- Department of Human Anatomy & Histoembryology, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan 453003, China
| | - Yinghua Zhang
- Department of Human Anatomy & Histoembryology, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan 453003, China.
| |
Collapse
|
3
|
Dell'Osso L, Nardi B, Massoni L, Gravina D, Benedetti F, Cremone IM, Carpita B. Neuroprotective Properties of Antiepileptics: What are the Implications for Psychiatric Disorders? Curr Med Chem 2024; 31:3447-3472. [PMID: 37226791 DOI: 10.2174/0929867330666230523155728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 05/26/2023]
Abstract
Since the discovery of the first antiepileptic compound, increasing attention has been paid to antiepileptic drugs (AEDs), and recently, with the understanding of the molecular mechanism underlying cells death, a new interest has revolved around a potential neuroprotective effect of AEDs. While many neurobiological studies in this field have focused on the protection of neurons, growing data are reporting how exposure to AEDs can also affect glial cells and the plastic response underlying recovery; however, demonstrating the neuroprotective abilities of AEDs remains a changeling task. The present work aims to summarize and review the literature available on the neuroprotective properties of the most commonly used AEDs. Results highlighted how further studies should investigate the link between AEDs and neuroprotective properties; while many studies are available on valproate, results for other AEDs are very limited and the majority of the research has been carried out on animal models. Moreover, a better understanding of the biological basis underlying neuro-regenerative defects may pave the way for the investigation of further therapeutic targets and eventually lead to an improvement in the actual treatment strategies.
Collapse
Affiliation(s)
- Liliana Dell'Osso
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Benedetta Nardi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Leonardo Massoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Davide Gravina
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Francesca Benedetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Ivan Mirko Cremone
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Barbara Carpita
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| |
Collapse
|
4
|
Boskabady M, Khazdair MR, Bargi R, Saadat S, Memarzia A, Mohammadian Roshan N, Hosseini M, Askari VR, Boskabady MH. Thymoquinone Ameliorates Lung Inflammation and Pathological Changes Observed in Lipopolysaccharide-Induced Lung Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6681729. [PMID: 33859710 PMCID: PMC8024078 DOI: 10.1155/2021/6681729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
Anti-inflammatory, antioxidant, and immunomodulatory effects of thymoquinone (TQ) have been shown. The effects of TQ on lipopolysaccharide- (LPS-) induced inflammation and pathological changes in rats' lung were investigated in this study. Four groups of rats included (1) control (saline treated); (2) LPS (treated with 1 mg/kg/day i.p. for two weeks); and (3 and 4) 5 or 10 mg/kg TQ i.p. 30 min prior to LPS administration. Total and differential WBC counts in the blood and bronchoalveolar fluid (BALF), TGF-β1, INF-γ, PGE2, and IL-4 levels in the BALF and pathological changes of the lung were evaluated. Total WBC count and eosinophil, neutrophil, and monocyte percentage were increased, but the lymphocyte percentage was reduced in the blood and BALF. The BALF levels of PGE2, TGF-β1, and INF-γ were also increased, but IL-4 level was reduced due to LPS administration. LPS also induced pathological insults in the lung of rats (P < 0.05 to P < 0.001 for all changes in LPS-exposed animals). Treatment with TQ showed a significant improvement in all changes induced by LPS (P < 0.05 to P < 0.05). TQ showed a protective effect on LPS-induced lung inflammation and pathological changes in rats which suggested a therapeutic potential for TQ on lung injury.
Collapse
Affiliation(s)
- Mostafa Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Rahimeh Bargi
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeideh Saadat
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Arghavan Memarzia
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nema Mohammadian Roshan
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Lee S, Yang M, Kim J, Kang S, Kim J, Kim JC, Jung C, Shin T, Kim SH, Moon C. Trimethyltin-induced hippocampal neurodegeneration: A mechanism-based review. Brain Res Bull 2016; 125:187-99. [PMID: 27450702 DOI: 10.1016/j.brainresbull.2016.07.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/19/2016] [Indexed: 12/22/2022]
Abstract
Trimethyltin (TMT), a toxic organotin compound, induces neurodegeneration selectively involving the limbic system and especially prominent in the hippocampus. Neurodegeneration-associated behavioral abnormalities, such as hyperactivity, aggression, cognitive deficits, and epileptic seizures, occur in both exposed humans and experimental animal models. Previously, TMT had been used generally in industry and agriculture, but the use of TMT has been limited because of its dangers to people. TMT has also been used to make a promising in vivo rodent model of neurodegeneration because of its region-specific characteristics. Several studies have demonstrated that TMT-treated animal models of epileptic seizures can be used as tools for researching hippocampus-specific neurotoxicity as well as the molecular mechanisms leading to hippocampal neurodegeneration. This review summarizes the in vivo and in vitro underlying mechanisms of TMT-induced hippocampal neurodegeneration (oxidative stress, inflammatory responses, and neuronal death/survival). Thus, the present review may be helpful to provide general insights into TMT-induced neurodegeneration and approaches to therapeutic interventions for neurodegenerative diseases, including temporal lobe epilepsy.
Collapse
Affiliation(s)
- Sueun Lee
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, South Korea
| | - Miyoung Yang
- Department of Anatomy, School of Medicine and Institute for Environmental Science, Wonkwang University, Jeonbuk 54538, South Korea
| | - Jinwook Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, South Korea
| | - Juhwan Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, South Korea
| | - Jong-Choon Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, South Korea
| | - Chaeyong Jung
- Department of Anatomy, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju 63243, South Korea
| | - Sung-Ho Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|