1
|
Hong S, Jeong SH, Han JH, Yuk HD, Jeong CW, Ku JH, Kwak C. Highly efficient nucleic acid encapsulation method for targeted gene therapy using antibody conjugation system. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102322. [PMID: 39363882 PMCID: PMC11447337 DOI: 10.1016/j.omtn.2024.102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024]
Abstract
Gene therapy has surfaced as a promising avenue for treating cancers, offering the advantage of deliberate adjustment of targeted genes. Nonetheless, the swift degradation of nucleic acids in the bloodstream necessitates an effective and secure delivery system. The widespread utilization of poly(lactic-co-glycolic acid) (PLGA) nanoparticles as drug delivery systems has highlighted challenges in controlling particle size and release properties. Moreover, the encapsulation of nucleic acids exacerbates these difficulties due to the negatively charged surface of PLGA nanoparticles. In this study, we aimed to improve the encapsulation efficiency of nucleic acids by employing negatively charged microbeads and optimizing the timing of the specific formulation steps. Furthermore, by conjugating PSMA-617, a ligand for the prostate-specific membrane antigen (PSMA), with PLGA nanoparticles, we assessed the antitumor effects and the efficacy of a nucleic acid delivery system on a prostate cancer model. The employed technique within the nucleic acid encapsulation system represents a novel approach that could be adapted to encapsulate various kinds of nucleic acids. Moreover, it enables the attachment of targeting moieties to different cell membrane proteins, thereby unveiling new prospects for precise therapeutics in cancer therapy.
Collapse
Affiliation(s)
- Seokbong Hong
- Department of Urology, Seoul National University College of Medicine, 03080 Seoul, South Korea
| | - Seung-Hwan Jeong
- Department of Urology, Seoul National University College of Medicine, 03080 Seoul, South Korea
- Department of Urology, Seoul National University Hospital, 03080 Seoul, South Korea
| | - Jang Hee Han
- Department of Urology, Seoul National University College of Medicine, 03080 Seoul, South Korea
- Department of Urology, Seoul National University Hospital, 03080 Seoul, South Korea
| | - Hyeong Dong Yuk
- Department of Urology, Seoul National University College of Medicine, 03080 Seoul, South Korea
- Department of Urology, Seoul National University Hospital, 03080 Seoul, South Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University College of Medicine, 03080 Seoul, South Korea
- Department of Urology, Seoul National University Hospital, 03080 Seoul, South Korea
| | - Ja Hyeon Ku
- Department of Urology, Seoul National University College of Medicine, 03080 Seoul, South Korea
- Department of Urology, Seoul National University Hospital, 03080 Seoul, South Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University College of Medicine, 03080 Seoul, South Korea
- Department of Urology, Seoul National University Hospital, 03080 Seoul, South Korea
| |
Collapse
|
2
|
Wang Z, Dai Z, Wang B, Gao Y, Gao X, Wang L, Zhou S, Yang L, Qiu X, Liu Z. Targeting c-MET to Enhance the Efficacy of Olaparib in Prostate Cancer. Onco Targets Ther 2021; 14:4383-4389. [PMID: 34377000 PMCID: PMC8349550 DOI: 10.2147/ott.s291267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Prostate cancer is the second leading cause of cancer death in men worldwide. Olaparib is clinically approved for the treatment prostate cancer, but cytotoxicity and off-target effects including DNA damage limit its clinical applications. In the current study, new strategies to improve the therapeutic efficacy of olaparib for the treatment of prostate cancer were investigated. Methods Two prostate cancer cell lines were exposed to the c-MET inhibitor PHA665752 and/or the PARP inhibitor olaparib. Cell counting kit-8, colony formation assays, and transwell assays were conducted to evaluate the cytotoxicity of olaparib alone or in combination with PHA665752 in prostate cancer cell lines. Western blotting, immunofluorescence staining, and the comet assay were used to assess the effects of PHA665752 on olaparib-induced DNA damage. Results Combined inhibition of c-MET and PARP resulted in effective and synergistic blocking of the growth of prostate cancer cell lines. Invasion and migration were significantly suppressed when the agents were combined. Mechanistically, dual blocking of PARP and c-MET in prostate cancer cell lines was associated with an impaired DNA damage response. Interestingly, immunofluorescence staining analysis of RAD51 protein indicated that the c-MET inhibitor PHA665752 significantly impaired homologous repair via downregulated translocation of RAD51 into the nucleus in prostate cancer cells. Conclusion The combination of the c-MET inhibitor PHA665752 and the PARP inhibitor olaparib may be a promising therapeutic strategy in patients with prostate cancer.
Collapse
Affiliation(s)
- Zhenwei Wang
- Department of Urinary Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China.,Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Zhihong Dai
- Department of Urinary Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Bingwei Wang
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Yuren Gao
- Department of Urinary Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Xiang Gao
- Department of Urinary Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Liang Wang
- Department of Urinary Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Sihai Zhou
- Department of Urinary Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Liqin Yang
- Department of Urinary Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Xiaofu Qiu
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People's Republic of China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zhiyu Liu
- Department of Urinary Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| |
Collapse
|
3
|
Feng T, Wei D, Zhao J, Li Q, Guo P, Yang X, Li M, Jiang Y, Luo Y. Construction of enzalutamide-resistant cell model of prostate cancer and preliminary screening of potential drug-resistant genes. Exp Biol Med (Maywood) 2021; 246:1776-1787. [PMID: 34034559 PMCID: PMC8719042 DOI: 10.1177/15353702211012625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/02/2021] [Indexed: 12/11/2022] Open
Abstract
Among many factors of causing castration-resistant prostate cancer (CRPC) progression, a growing number of evidences have shown androgen receptors play a critical role. Therefore, blocking androgen receptor remains a therapeutic goal of CRPC. However, resistance to androgen receptor inhibitors, for example, enzalutamide, limits therapeutic efficacy for many patients. In this study, to develop an enzalutamide-resistant cell model for molecular mechanism investigation of enzalutamide-resistance, we continuously treated C4-2B cells with multiplied concentrations of enzalutamide. The IC50 of resistant cells was identified as 14.7705 µM, and the resistance index was calculated as 12.4. In addition, we verified the resistance of resistant cells through experiments in vivo and found the genes in androgen receptor signaling pathway (androgen receptor, Jagged1, Notch1) and those in androgen receptor alternative signaling pathways behaved the opposite. For some of the former, their mRNA and protein expression reduced markedly while for the latter, for example, CXCR7, AKT, STAT3, FOXP3, they rose dramatically in the expression level of protein and mRNA. More importantly, the tumor volume, tumor wet weight, PSA and VEGF secretion level, positive staining rate of Ki67 nuclei in resistant strain heterogeneous tumor treated with enzalutamide were significantly higher than those of maternal cell heterogeneous tumor treated with enzalutamide, whereas no obvious difference was detected between resistant strain heterogeneous tumor treated with enzalutamide and those of the resistant strain treated with reference drug. Finally, we identified 654 differentially expression genes and 2 compounds (atracurium besilate, methotrexates) associated with the amelioration of enzalutamide-resistance. Overall, we successfully established an enzalutamide-resistance cell model and screened out some resistance genes and candidate small molecule drugs.
Collapse
Affiliation(s)
| | | | - Jiahui Zhao
- Department of Urology, Beijing Anzhen hospital, Capital Medical University, Beijing 100029, China
| | - Qiankun Li
- Department of Urology, Beijing Anzhen hospital, Capital Medical University, Beijing 100029, China
| | - Pengju Guo
- Department of Urology, Beijing Anzhen hospital, Capital Medical University, Beijing 100029, China
| | - Xiaobing Yang
- Department of Urology, Beijing Anzhen hospital, Capital Medical University, Beijing 100029, China
| | - Mingchuan Li
- Department of Urology, Beijing Anzhen hospital, Capital Medical University, Beijing 100029, China
| | - Yongguang Jiang
- Department of Urology, Beijing Anzhen hospital, Capital Medical University, Beijing 100029, China
| | - Yong Luo
- Department of Urology, Beijing Anzhen hospital, Capital Medical University, Beijing 100029, China
| |
Collapse
|
4
|
Li S, Sheng J, Liu Z, Fan Y, Zhang C, Lv T, Hu S, Jin J, Yu W, Song Y. Potent antitumour of the mTORC1/2 dual inhibitor AZD2014 in docetaxel-sensitive and docetaxel-resistant castration-resistant prostate cancer cells. J Cell Mol Med 2021; 25:2436-2449. [PMID: 33507584 PMCID: PMC7933970 DOI: 10.1111/jcmm.16155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
Recent studies indicate mammalian target of rapamycin (mTOR) may play an important role in PCa progression and drug resistance. Here, we investigated the effects of a novel mTORC1/C2 dual inhibitor, AZD2014, on naive and docetaxel (Doc)‐pre‐treated castration‐resistant PCa (CRPC) cells and explored its therapeutic potential in CRPCs. In the current study, AZD2014 has a greater inhibitory effect against 4EBP1 and AKT phosphorylation than rapamycin in CRPC cells and prevented the feedback activation of AKT signalling. Importantly, AZD2014 suppressed CRPC cell growth in vitro by suppressing proliferation, apoptosis, cell cycle arrest at G1 phase and autophagy to a greater extent than rapamycin. Moreover, AZD2014 was more efficacious than rapamycin in inhibiting migration, invasion and EMT progression in Doc‐sensitive and Doc‐resistant CRPC cells. Overall, AZD2014 showed significant antitumour effects. Thereby, the current study highlights a reliable theoretical basis for the clinical application of AZD2014 in both Doc‐sensitive and Doc‐resistant CRPCs.
Collapse
Affiliation(s)
- Senmao Li
- Department of Urology, Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| | - Jindong Sheng
- Department of Gynaecological Oncology, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhenhua Liu
- Department of Urology, Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| | - Yu Fan
- Department of Urology, Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| | - Cuijian Zhang
- Department of Urology, Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| | - Tianjing Lv
- Department of Urology, Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| | - Shuai Hu
- Department of Urology, Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| | - Jie Jin
- Department of Urology, Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| | - Wei Yu
- Department of Urology, Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| | - Yi Song
- Department of Urology, Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| |
Collapse
|
5
|
Shimizu Y, Tamada S, Kato M, Hirayama Y, Takeyama Y, Iguchi T, Sadar MD, Nakatani T. Androgen Receptor Splice Variant 7 Drives the Growth of Castration Resistant Prostate Cancer without Being Involved in the Efficacy of Taxane Chemotherapy. J Clin Med 2018; 7:jcm7110444. [PMID: 30453546 PMCID: PMC6262607 DOI: 10.3390/jcm7110444] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/15/2022] Open
Abstract
Expression of androgen receptor (AR) splice variant 7 (AR-V7) has been identified as the mechanism associated with the development of castration-resistant prostate cancer (CRPC). However, a potential link between AR-V7 expression and resistance to taxanes, such as docetaxel or cabazitaxel, has not been unequivocally demonstrated. To address this, we used LNCaP95-DR cells, which express AR-V7 and exhibit resistance to enzalutamide and docetaxel. Interestingly, LNCaP95-DR cells showed cross-resistance to cabazitaxel. Furthermore, these cells had increased levels of P-glycoprotein (P-gp) and their sensitivity to both docetaxel and cabazitaxel was restored through treatment with tariquidar, a P-gp antagonist. Results generated demonstrated that P-gp mediated cross-resistance between docetaxel and cabazitaxel. Although the LNCaP95-DR cells had increased expression of AR-V7 and its target genes (UBE2C, CDC20), the knockdown of AR-V7 did not restore sensitivity to docetaxel or cabazitaxel. However, despite resistance to docetaxel and carbazitaxel, EPI-002, an antagonist of the AR amino-terminal domain (NTD), had an inhibitory effect on the proliferation of LNCaP95-DR cells, which was similar to that achieved with the parental LNCaP95 cells. On the other hand, enzalutamide had no effect on the proliferation of either cell line. In conclusion, our results suggested that EPI-002 may be an option for the treatment of AR-V7-driven CRPC, which is resistant to taxanes.
Collapse
Affiliation(s)
- Yasuomi Shimizu
- Department of Urology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan.
| | - Satoshi Tamada
- Department of Urology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan.
| | - Minoru Kato
- Department of Urology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan.
| | | | - Yuji Takeyama
- Department of Urology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan.
| | - Taro Iguchi
- Department of Urology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan.
| | - Marianne D Sadar
- Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada.
| | - Tatsuya Nakatani
- Department of Urology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan.
| |
Collapse
|
6
|
Synthesis and PI3 Kinase Inhibition Activity of Some Novel Trisubstituted Morpholinopyrimidines. Molecules 2018; 23:molecules23071675. [PMID: 29996482 PMCID: PMC6100461 DOI: 10.3390/molecules23071675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/05/2018] [Accepted: 07/07/2018] [Indexed: 11/17/2022] Open
Abstract
A number of new substituted morpholinopyrimidines were prepared utilizing sequential nucleophilic aromatic substitution and cross-coupling reactions. One of the disubstituted pyrimidines was converted into two trisubstituted compounds which were screened as PI3K inhibitors relative to the well-characterized PI3K inhibitor ZSTK474, and were found to be 1.5⁻3-times more potent. A leucine linker was attached to the most active inhibitor since it would remain on any peptide-containing prodrug after cleavage by prostate-specific antigen, and it did not prevent inhibition of AKT phosphorylation and hence the inhibition of PI3K by the modified inhibitor.
Collapse
|
7
|
Synthesis and PI 3-Kinase Inhibition Activity of Some Novel 2,4,6-Trisubstituted 1,3,5-Triazines. Molecules 2018; 23:molecules23071628. [PMID: 29973512 PMCID: PMC6100378 DOI: 10.3390/molecules23071628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 06/30/2018] [Accepted: 07/02/2018] [Indexed: 01/20/2023] Open
Abstract
A number of new trisubstituted triazine phosphatidylinositol 3-kinase (PI3K) inhibitors were prepared via a three-step procedure utilizing sequential nucleophilic aromatic substitution and cross-coupling reactions. All were screened as PI3K inhibitors relative to the well-characterized PI3K inhibitor, ZSTK474. The most active inhibitors prepared here were 2–4 times more potent than ZSTK474. A leucine linker was attached to the most active inhibitor since it would remain on any peptide-containing prodrug after cleavage by a prostate-specific antigen, and it did not prevent inhibition of protein kinase B (Akt) phosphorylation, and hence, the inhibition of PI3K by the modified inhibitor.
Collapse
|
8
|
Masoodi KZ, Xu Y, Dar JA, Eisermann K, Pascal LE, Parrinello E, Ai J, Johnston PA, Nelson JB, Wipf P, Wang Z. Inhibition of Androgen Receptor Nuclear Localization and Castration-Resistant Prostate Tumor Growth by Pyrroloimidazole-based Small Molecules. Mol Cancer Ther 2017; 16:2120-2129. [PMID: 28655783 DOI: 10.1158/1535-7163.mct-17-0176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/19/2017] [Accepted: 06/19/2017] [Indexed: 01/01/2023]
Abstract
The androgen receptor (AR) is a ligand-dependent transcription factor that controls the expression of androgen-responsive genes. A key step in androgen action, which is amplified in castration-resistant prostate cancer (CRPC), is AR nuclear translocation. Small molecules capable of inhibiting AR nuclear localization could be developed as novel therapeutics for CRPC. We developed a high-throughput screen and identified two structurally-related pyrroloimidazoles that could block AR nuclear localization in CRPC cells. We show that these two small molecules, 3-(4-ethoxyphenyl)-6,7-dihydro-5H-pyrrolo[1,2-a]imidazole (EPPI) and 3-(4-chlorophenyl)-6,7-dihydro-5H-pyrrolo[1,2-a]imidazole (CPPI) can inhibit the nuclear localization and transcriptional activity of AR and reduce the proliferation of AR-positive but not AR-negative prostate cancer cell lines. EPPI and CPPI did not inhibit nuclear localization of the glucocorticoid receptor or the estrogen receptor, suggesting they selectively target AR. In LNCaP tumor xenografts, CPPI inhibited the proliferation of relapsed LNCaP tumors. These findings suggest that EPPI and CPPI could serve as lead structures for the development of therapeutic agents for CRPC. Mol Cancer Ther; 16(10); 2120-9. ©2017 AACR.
Collapse
Affiliation(s)
- Khalid Z Masoodi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Transcriptomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| | - Yadong Xu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Urology, The Second Xiangya Hospital of Central South University, Hunan 410011, China.,The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Javid A Dar
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Central Laboratory College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kurtis Eisermann
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Laura E Pascal
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Erica Parrinello
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Junkui Ai
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Paul A Johnston
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joel B Nelson
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Peter Wipf
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. .,University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Qi W, Morales C, Cooke LS, Johnson B, Somer B, Mahadevan D. Reciprocal feedback inhibition of the androgen receptor and PI3K as a novel therapy for castrate-sensitive and -resistant prostate cancer. Oncotarget 2016; 6:41976-87. [PMID: 26506516 PMCID: PMC4747202 DOI: 10.18632/oncotarget.5659] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/30/2015] [Indexed: 01/04/2023] Open
Abstract
Gain-of-function of the androgen receptor (AR) and activation of PI3K/AKT/mTOR pathway have been demonstrated to correlate with progression to castration-resistant prostate cancer (CRPC). However, inhibition of AR or PI3K/mTOR alone results in a reciprocal feedback activation. Therefore, we hypothesized that dual inhibition of the AR and PI3K/mTOR pathway might lead to a synergistic inhibition of cell growth and overcome drug resistance in CRPC. Here, we reported that androgen-depletion increased AR protein level and Akt phosphorylation at Ser473 and Thr308 in LNCaP cells. Moreover, we developed resistance cell lines of LNCaP to Enzalutamide (or MDV3100), an AR inhibitor (named as LNCaP ‘MDV-R’) and PF-04691502, a PI3K/mTOR inhibitor (named as LNCaP ‘PF-R’). MTS analysis showed that LNCaP ‘PF-R’ was strongly resistant to Enzalutamide treatment, and on the other hand, LNCaP ‘MDV-R’ was 6-fold resistant to PF-04691502 treatment. Mechanistically, LNCaP ‘MDV-R’ cells had significantly reduced AR, loss of PSA and increase Akt activity in contrast with LNCaP ‘PF-R’ cells. Combined inhibition of PI3K/mTOR and AR pathways with a variety of small molecular inhibitors led to a synergistic suppression of cell proliferation and a profound increase of apoptosis and cell cycle arrest in both androgen-dependent LNCaP and independent CRPC 22Rv1 cell lines. In conclusion, this study provides preclinical proof-of-concept that the combination of a PI3K/mTOR inhibitor with an AR inhibitor results in a synergistic anti-tumor response in non-CRPC and CRPC models.
Collapse
Affiliation(s)
- Wenqing Qi
- West Cancer Center/University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Carla Morales
- West Cancer Center/University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Laurence S Cooke
- West Cancer Center/University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Benny Johnson
- West Cancer Center/University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Bradley Somer
- West Cancer Center/University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Daruka Mahadevan
- West Cancer Center/University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| |
Collapse
|
10
|
Yong W, Jiao C, Jianhui W, Yan Z, Qi P, Xiu W, Zuyue S, Yunhui Z. Mono-2-ethyhexyl phthalate advancing the progression of prostate cancer through activating the hedgehog pathway in LNCaP cells. Toxicol In Vitro 2015; 32:86-91. [PMID: 26710974 DOI: 10.1016/j.tiv.2015.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/29/2015] [Accepted: 12/18/2015] [Indexed: 01/13/2023]
Abstract
Hedgehog (Hh) pathway plays a critical role in the progression of prostate cancer (PCa), the most commonly diagnosed non-cutaneous cancer in male adults. Studies showed that di-n-butyl phthalate (DBP) could interference with the Hh pathway. Di-2-ethylhexyl phthalate (DEHP), the congener of DBP, is the major plasticizer used in plastic materials that are inevitably exposed by patients with PCa. The aim of this in vitro study was to investigate whether mono-2-ethyhexyl phthalate (MEHP, the active metabolite of DEHP) could activate the Hh pathway of LNCaP cells. Results showed that the expression of the critical gene of Hh pathway PTCH and androgen-regulated gene KLK3 was significantly decreased on 3, 6 and 9 days with Hh pathway inhibitor cyclopamine's treatment. MEHP notably up-regulated the expression of PTCH with a dose-response relationship in the presence of cyclopamine, which indicate that MEHP might target on the downstream components of Hh pathway and advance the progression of PCa through activating the Hh pathway.
Collapse
Affiliation(s)
- Wang Yong
- WHO Collaborating Center for Research in Human Reproduction, Shanghai Institute of Planned Parenthood Research, Shanghai 200030, China
| | - Chen Jiao
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Wu Jianhui
- WHO Collaborating Center for Research in Human Reproduction, Shanghai Institute of Planned Parenthood Research, Shanghai 200030, China
| | - Zhao Yan
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Pan Qi
- WHO Collaborating Center for Research in Human Reproduction, Shanghai Institute of Planned Parenthood Research, Shanghai 200030, China
| | - Wang Xiu
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Sun Zuyue
- WHO Collaborating Center for Research in Human Reproduction, Shanghai Institute of Planned Parenthood Research, Shanghai 200030, China.
| | - Zhang Yunhui
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
11
|
Cellular Plasticity in Prostate Cancer Bone Metastasis. Prostate Cancer 2015; 2015:651580. [PMID: 26146569 PMCID: PMC4469842 DOI: 10.1155/2015/651580] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/12/2015] [Indexed: 12/13/2022] Open
Abstract
Purpose. Experimental data suggest that tumour cells can reversibly transition between epithelial and mesenchymal states (EMT and MET), a phenomenon known as cellular plasticity. The aim of this review was to appraise the clinical evidence for the role of cellular plasticity in prostate cancer (PC) bone metastasis. Methods. An electronic search was performed using PubMed for studies that have examined the differential expression of epithelial, mesenchymal, and stem cell markers in human PC bone metastasis tissues. Results. The review included nineteen studies. More than 60% of the studies used ≤20 bone metastasis samples, and there were several sources of heterogeneity between studies. Overall, most stem cell markers analysed, except for CXCR4, were positively expressed in bone metastasis tissues, while the expression of EMT and MET markers was heterogeneous between and within samples. Several EMT and stemness markers that are involved in osteomimicry, such as Notch, Met receptor, and Wnt/β pathway, were highly expressed in bone metastases. Conclusions. Clinical findings support the role of cellular plasticity in PC bone metastasis and suggest that epithelial and mesenchymal states cannot be taken in isolation when targeting PC bone metastasis. The paper also highlights several challenges in the clinical detection of cellular plasticity.
Collapse
|
12
|
Bitting RL, Schaeffer D, Somarelli JA, Garcia-Blanco MA, Armstrong AJ. The role of epithelial plasticity in prostate cancer dissemination and treatment resistance. Cancer Metastasis Rev 2014; 33:441-68. [PMID: 24414193 PMCID: PMC4230790 DOI: 10.1007/s10555-013-9483-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nearly 30,000 men die annually in the USA of prostate cancer, nearly uniformly from metastatic dissemination. Despite recent advances in hormonal, immunologic, bone-targeted, and cytotoxic chemotherapies, treatment resistance and further dissemination are inevitable in men with metastatic disease. Emerging data suggests that the phenomenon of epithelial plasticity, encompassing both reversible mesenchymal transitions and acquisition of stemness traits, may underlie this lethal biology of dissemination and treatment resistance. Understanding the molecular underpinnings of this cellular plasticity from preclinical models of prostate cancer and from biomarker studies of human metastatic prostate cancer has provided clues to novel therapeutic approaches that may delay or prevent metastatic disease and lethality over time. This review will discuss the preclinical and clinical evidence for epithelial plasticity in this rapidly changing field and relate this to clinical phenotype and resistance in prostate cancer while suggesting novel therapeutic approaches.
Collapse
Affiliation(s)
- Rhonda L. Bitting
- Division of Medical Oncology, Duke Cancer Institute, Duke University, DUMC Box 102002, Durham, NC 27710, USA. Department of Medicine, Duke University, Durham, NC, USA. Center for RNA Biology, Duke University, Durham, NC, USA
| | - Daneen Schaeffer
- Center for RNA Biology, Duke University, Durham, NC, USA. Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Jason A. Somarelli
- Center for RNA Biology, Duke University, Durham, NC, USA. Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Mariano A. Garcia-Blanco
- Department of Medicine, Duke University, Durham, NC, USA. Center for RNA Biology, Duke University, Durham, NC, USA. Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Andrew J. Armstrong
- Division of Medical Oncology, Duke Cancer Institute, Duke University, DUMC Box 102002, Durham, NC 27710, USA. Department of Medicine, Duke University, Durham, NC, USA. Center for RNA Biology, Duke University, Durham, NC, USA. Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| |
Collapse
|
13
|
Barnett CM, Heinrich MC, Lim J, Nelson D, Beadling C, Warrick A, Neff T, Higano CS, Garzotto M, Qian D, Corless CL, Thomas GV, Beer TM. Genetic profiling to determine risk of relapse-free survival in high-risk localized prostate cancer. Clin Cancer Res 2013; 20:1306-12. [PMID: 24352642 DOI: 10.1158/1078-0432.ccr-13-1775] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The characterization of actionable mutations in human tumors is a prerequisite for the development of individualized, targeted therapy. We examined the prevalence of potentially therapeutically actionable mutations in patients with high-risk clinically localized prostate cancer. EXPERIMENTAL DESIGN Forty-eight samples of formalin-fixed paraffin-embedded prostatectomy tissue from a neoadjuvant chemotherapy trial were analyzed. DNA extracted from microdissected tumor was analyzed for 643 common solid tumor mutations in 53 genes using mass spectroscopy-based sequencing. In addition, PTEN loss and erythroblast transformation-specific-related gene (ERC) translocations were examined using immunohistochemistry (IHC) in associated tissue microarrays. Association with relapse during 5 years of follow-up was examined in exploratory analyses of the potential clinical relevance of the genetic alterations. RESULTS Of the 40 tumors evaluable for mutations, 10% had point mutations in potentially actionable cancer genes. Of the 47 tumors evaluable for IHC, 36% had PTEN loss and 40% had ERG rearrangement. Individual mutations were not frequent enough to determine associations with relapse. Using Kaplan-Meier analysis with a log-rank test, the 16 patients who had PTEN loss had a significantly shorter median relapse-free survival, 19 versus 106 months (P = 0.01). CONCLUSIONS This study confirms that point mutations in the most common cancer regulatory genes in prostate cancer are rare. However, the PIK3CA/AKT pathway was mutated in 10% of our samples. Although point mutations alone did not have a statistically significant association with relapse, PTEN loss was associated with an increased relapse in high-risk prostate cancer treated with chemotherapy followed by surgery.
Collapse
Affiliation(s)
- Christine M Barnett
- Authors' Affiliations: Knight Cancer Institute; Department of Public Health and Preventive Medicine; Knight Diagnostic Laboratories, Oregon Health and Science University; Portland VA Medical Center, Portland, Oregon; and Puget Sound Oncology Consortium, Seattle Cancer Care Alliance, University of Washington, Seattle, Washington
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sun T, Wang X, He HH, Sweeney CJ, Liu SX, Brown M, Balk S, Lee GS, Kantoff PW. MiR-221 promotes the development of androgen independence in prostate cancer cells via downregulation of HECTD2 and RAB1A. Oncogene 2013; 33:2790-800. [PMID: 23770851 DOI: 10.1038/onc.2013.230] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 04/15/2013] [Accepted: 04/25/2013] [Indexed: 12/18/2022]
Abstract
Hormone-sensitive prostate cancer typically progresses to castration resistant prostate cancer (CRPC) after the androgen deprivation therapy. We investigated the impact of microRNAs (miRs) in the transition of prostate cancer to CRPC. MiR-221/-222 was highly expressed in bone metastatic CRPC tumor specimens. We previously demonstrated that transient overexpression of miR-221/-222 in LNCaP promoted the development of the CRPC phenotype. In current study, we show that stably overexpressing miR-221 confers androgen independent (AI) cell growth in LNCaP by rescuing LNCaP cells from growth arrest at G1 phase due to the lack of androgen. Overexpressing of miR-221 in LNCaP reduced the transcription of a subgroup of androgen-responsive genes without affecting the androgen receptor (AR) or AR-androgen integrity. By performing systematic biochemical and bioinformatical analyses, we identified two miR-221 targets, HECTD2 and RAB1A, which could mediate the development of CRPC phenotype in multiple prostate cancer cell lines. Downregulation of HECTD2 significantly affected the androgen-induced and AR-mediated transcription, and downregulation of HECTD2 or RAB1A enhances AI cell growth. As a result of the elevated expression of miR-221, expression of many cell cycle genes was altered and pathways promoting epithelial to mesenchymal transition/tumor metastasis were activated. We hypothesize that a major biological consequence of upregulation of miR-221 is reprogramming of AR signaling, which in turn may mediate the transition to the CRPC phenotype.
Collapse
Affiliation(s)
- T Sun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - X Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - H H He
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA [2] Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - C J Sweeney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S X Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - M Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S Balk
- Cancer Biology Program, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - G-Sm Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - P W Kantoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is a key signaling pathway that has been linked to both tumorigenesis and resistance to therapy in prostate cancer and other solid tumors. Given the significance of the PI3K/Akt/mTOR pathway in integrating cell survival signals and the high prevalence of activating PI3K/Akt/mTOR pathway alterations in prostate cancer, inhibitors of this pathway have great potential for clinical benefit. Here, we review the role of the PI3K/Akt/mTOR pathway in prostate cancer and discuss the potential use of pathway inhibitors as single agents or in combination in the evolving treatment landscape of castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Rhonda L Bitting
- Division of Medical Oncology, Duke Cancer Institute, Duke University, DUMC Box 102002, Durham, North Carolina 27710, USA
| | | |
Collapse
|
16
|
PTEN in Prostate Cancer. Prostate Cancer 2013. [DOI: 10.1007/978-1-4614-6828-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
17
|
Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S, Arora VK, Le C, Koutcher J, Scher H, Scardino PT, Rosen N, Sawyers CL. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 2011; 19:575-86. [PMID: 21575859 PMCID: PMC3142785 DOI: 10.1016/j.ccr.2011.04.008] [Citation(s) in RCA: 925] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 02/24/2011] [Accepted: 04/14/2011] [Indexed: 12/15/2022]
Abstract
Prostate cancer is characterized by its dependence on androgen receptor (AR) and frequent activation of PI3K signaling. We find that AR transcriptional output is decreased in human and murine tumors with PTEN deletion and that PI3K pathway inhibition activates AR signaling by relieving feedback inhibition of HER kinases. Similarly, AR inhibition activates AKT signaling by reducing levels of the AKT phosphatase PHLPP. Thus, these two oncogenic pathways cross-regulate each other by reciprocal feedback. Inhibition of one activates the other, thereby maintaining tumor cell survival. However, combined pharmacologic inhibition of PI3K and AR signaling caused near-complete prostate cancer regressions in a Pten-deficient murine prostate cancer model and in human prostate cancer xenografts, indicating that both pathways coordinately support survival.
Collapse
MESH Headings
- Androgen Antagonists/pharmacology
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Feedback, Physiological
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- Humans
- Magnetic Resonance Imaging
- Male
- Mice
- Mice, Knockout
- Mice, SCID
- Mice, Transgenic
- Nuclear Proteins/metabolism
- PTEN Phosphohydrolase/deficiency
- PTEN Phosphohydrolase/genetics
- Phosphatidylinositol 3-Kinase/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Phosphoprotein Phosphatases/metabolism
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/enzymology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- RNA Interference
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/antagonists & inhibitors
- Receptor, ErbB-3/metabolism
- Receptors, Androgen/drug effects
- Receptors, Androgen/metabolism
- Signal Transduction/drug effects
- Time Factors
- Transcription, Genetic
- Transfection
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Brett S Carver
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Surgery and Division of Urology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Caren Chapinski
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Surgery and Division of Urology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - John Wongvipat
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Haley Hieronymus
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Vivek K Arora
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Carl Le
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jason Koutcher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Howard Scher
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Peter T Scardino
- Department of Surgery and Division of Urology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Neal Rosen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
18
|
Chen M, Feuerstein MA, Levina E, Baghel PS, Carkner RD, Tanner MJ, Shtutman M, Vacherot F, Terry S, de la Taille A, Buttyan R. Hedgehog/Gli supports androgen signaling in androgen deprived and androgen independent prostate cancer cells. Mol Cancer 2010; 9:89. [PMID: 20420697 PMCID: PMC2873440 DOI: 10.1186/1476-4598-9-89] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 04/26/2010] [Indexed: 11/16/2022] Open
Abstract
Background Castration resistant prostate cancer (CRPC) develops as a consequence of hormone therapies used to deplete androgens in advanced prostate cancer patients. CRPC cells are able to grow in a low androgen environment and this is associated with anomalous activity of their endogenous androgen receptor (AR) despite the low systemic androgen levels in the patients. Therefore, the reactivated tumor cell androgen signaling pathway is thought to provide a target for control of CRPC. Previously, we reported that Hedgehog (Hh) signaling was conditionally activated by androgen deprivation in androgen sensitive prostate cancer cells and here we studied the potential for cross-talk between Hh and androgen signaling activities in androgen deprived and androgen independent (AI) prostate cancer cells. Results Treatment of a variety of androgen-deprived or AI prostate cancer cells with the Hh inhibitor, cyclopamine, resulted in dose-dependent modulation of the expression of genes that are regulated by androgen. The effect of cyclopamine on endogenous androgen-regulated gene expression in androgen deprived and AI prostate cancer cells was consistent with the suppressive effects of cyclopamine on the expression of a reporter gene (luciferase) from two different androgen-dependent promoters. Similarly, reduction of smoothened (Smo) expression with siRNA co-suppressed expression of androgen-inducible KLK2 and KLK3 in androgen deprived cells without affecting the expression of androgen receptor (AR) mRNA or protein. Cyclopamine also prevented the outgrowth of AI cells from androgen growth-dependent parental LNCaP cells and suppressed the growth of an overt AI-LNCaP variant whereas supplemental androgen (R1881) restored growth to the AI cells in the presence of cyclopamine. Conversely, overexpression of Gli1 or Gli2 in LNCaP cells enhanced AR-specific gene expression in the absence of androgen. Overexpressed Gli1/Gli2 also enabled parental LNCaP cells to grow in androgen depleted medium. AR protein co-immunoprecipitates with Gli2 protein from transfected 293T cell lysates. Conclusions Collectively, our results indicate that Hh/Gli signaling supports androgen signaling and AI growth in prostate cancer cells in a low androgen environment. The finding that Gli2 co-immunoprecipitates with AR protein suggests that an interaction between these proteins might be the basis for Hedgehog/Gli support of androgen signaling under this condition.
Collapse
Affiliation(s)
- Mengqian Chen
- The Ordway Research Institute, Albany, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Karavasilis V, Briasoulis E, Siarabi O, Pavlidis N. Biweekly Administration of Low-Dose Docetaxel in Hormone-Resistant Prostate Cancer: Pilot Study of an Effective Subtoxic Therapy. ACTA ACUST UNITED AC 2003; 2:46-9. [PMID: 15046684 DOI: 10.3816/cgc.2003.n.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Taxane-based chemotherapy has shown activity but also toxicity when administered at standard doses in patients with hormone-resistant prostate cancer (HRPC). In this pilot study, we investigated biweekly low-dose docetaxel in patients with HRPC as a convenient regimen with low toxicity. Sixteen patients with metastatic HRPC entered the study. Median age was 73 years, median performance status (PS) was 2, and median Gleason score was 9. All patients had undergone and failed combined androgen-blockade therapy (luteinizing hormone-releasing hormone analogue plus antiandrogen) for their metastatic disease; 3 had also been treated with mitoxantrone. Treatment consisted of docetaxel 30 mg/m2 administered every 2 weeks. Prostate-specific antigen (PSA) response, characterized by a 50% decrease of PSA level confirmed 4 weeks later, was the primary endpoint. Durations of PSA response and toxicity assessment were secondary endpoints. A total of 136 biweekly docetaxel doses were administered, with a median of 8.5 doses per patient (range, 2-24). Six patients (38%; 95% confidence interval, 25%-43%) fulfilled the criteria of PSA response. Median duration of PSA response was 4.5 months (range, 3-12). Toxicity was negligible: myelotoxicity was practically absent, whereas 3 patients developed grade 1 alopecia and 1 patient developed dacryorrhea. We conclude that our study provides evidence that biweekly docetaxel at 30 mg/m2 can be considered an effective nontoxic therapeutic option for patients with HRPC. Confirmation of these preliminary data in larger-scale trials is justified
Collapse
|
20
|
Fransson P. COMMENTARIES. Eur J Oncol Nurs 2003. [DOI: 10.1016/s1462-3889(03)00034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|