1
|
Makowska M, Smolarz B, Romanowicz H. microRNAs (miRNAs) in Glioblastoma Multiforme (GBM)-Recent Literature Review. Int J Mol Sci 2023; 24:3521. [PMID: 36834933 PMCID: PMC9965735 DOI: 10.3390/ijms24043521] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common, malignant, poorly promising primary brain tumor. GBM is characterized by an infiltrating growth nature, abundant vascularization, and a rapid and aggressive clinical course. For many years, the standard treatment of gliomas has invariably been surgical treatment supported by radio- and chemotherapy. Due to the location and significant resistance of gliomas to conventional therapies, the prognosis of glioblastoma patients is very poor and the cure rate is low. The search for new therapy targets and effective therapeutic tools for cancer treatment is a current challenge for medicine and science. microRNAs (miRNAs) play a key role in many cellular processes, such as growth, differentiation, cell division, apoptosis, and cell signaling. Their discovery was a breakthrough in the diagnosis and prognosis of many diseases. Understanding the structure of miRNAs may contribute to the understanding of the mechanisms of cellular regulation dependent on miRNA and the pathogenesis of diseases underlying these short non-coding RNAs, including glial brain tumors. This paper provides a detailed review of the latest reports on the relationship between changes in the expression of individual microRNAs and the formation and development of gliomas. The use of miRNAs in the treatment of this cancer is also discussed.
Collapse
Affiliation(s)
- Marianna Makowska
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| |
Collapse
|
2
|
Shrivastava R, Gandhi P, Gothalwal R. The road-map for establishment of a prognostic molecular marker panel in glioma using liquid biopsy: current status and future directions. Clin Transl Oncol 2022; 24:1702-1714. [PMID: 35653004 DOI: 10.1007/s12094-022-02833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/02/2022] [Indexed: 11/24/2022]
Abstract
Gliomas are primary intracranial tumors with defined molecular markers available for precise diagnosis. The prognosis of glioma is bleak as there is an overlook of the dynamic crosstalk between tumor cells and components of the microenvironment. Herein, different phases of gliomagenesis are presented with reference to the role and involvement of secreted proteomic markers at various stages of tumor initiation and development. The secreted markers of inflammatory response, namely interleukin-6, tumor necrosis factor-α, interferon-ϒ, and kynurenine, proliferation markers human telomerase reverse transcriptase and microtubule-associated-protein-Tau, and stemness marker human-mobility-group-AThook-1 are involved in glial tumor initiation and growth. Further, hypoxia and angiogenic factors, heat-shock-protein-70, endothelial-growth-factor-receptor-1 and vascular endothelial growth factor play a major role in promoting vascularization and tumor volume expansion. Eventually, molecules such as matrix-metalloprotease-7 and intercellular adhesion molecule-1 contribute to the degradation and remodeling of the extracellular matrix, ultimately leading to glioma progression. Our study delineates the roadmap to develop and evaluate a non-invasive panel of secreted biomarkers using liquid biopsy for precisely evaluating disease progression, to accomplish a clinical translation.
Collapse
Affiliation(s)
- Richa Shrivastava
- Department of Research, Bhopal Memorial Hospital and Research Centre, Raisen Bypass Road, Bhopal, M.P., 462038, India
| | - Puneet Gandhi
- Department of Research, Bhopal Memorial Hospital and Research Centre, Raisen Bypass Road, Bhopal, M.P., 462038, India.
| | - Ragini Gothalwal
- Department of Biotechnology, Barkatullah University, Bhopal, M.P., 462026, India
| |
Collapse
|
3
|
Tira A, Buckingham L. Evidence for age-related contributions of DNA damage and epigenetics in brain tumorigenesis. Int J Exp Pathol 2021; 102:232-241. [PMID: 34716726 DOI: 10.1111/iep.12402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is a highly malignant primary brain tumour displaying rapid cell proliferation and infiltration. GBM primarily occurs at older age; however, younger populations have also been affected. In GBM and other cancers, genetic and epigenetic alterations promote tumorigenesis causing increased cell proliferation and invasiveness. This investigation explored epigenetic events as contributing factors, especially in gliomas that arise in patients aged 40-60 years. Furthermore, DNA damage in tumours with respect to age was assessed. Archival fixed tissues from 88 cases of glioblastoma and adjacent non-malignant tissues were tested. Global methylation and DNA damage were measured using ELISA detection of 5-methyl cytosine and 8-hydroxy guanine, respectively. IDH mutations and CDKN2 promoter hypermethylation were analysed by pyrosequencing. Tumour tissue was hypomethylated compared with non-malignant tissue (P = .001), and there was a trend towards increased methylation with increasing age. There was a significant increase in DNA damage in patients older than forty years compared with those aged forty years or younger (P = .035). CDKN2 promoter methylation levels followed the age trends of global methylation in this patient group. Patients younger than 60 had more frequently mutated IDH (P = .004). Conclusions: The data support the potential of epigenetic factors in promoting tumorigenesis in younger patients, while increased DNA damage contributes to tumorigenesis in the older patients.
Collapse
Affiliation(s)
- Adrian Tira
- Rush University College of Health Sciences, Chicago, IL, USA
| | - Lela Buckingham
- Rush University College of Health Sciences, Chicago, IL, USA
| |
Collapse
|
4
|
Mobark NA, Alharbi M, Alhabeeb L, AlMubarak L, Alaljelaify R, AlSaeed M, Almutairi A, Alqubaishi F, Ahmad M, Al-Banyan A, Alotabi FE, Barakeh D, AlZahrani M, Al-Khalidi H, Ajlan A, Ramkissoon LA, Ramkissoon SH, Abedalthagafi M. Clinical management and genomic profiling of pediatric low-grade gliomas in Saudi Arabia. PLoS One 2020; 15:e0228356. [PMID: 31995621 PMCID: PMC6988947 DOI: 10.1371/journal.pone.0228356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/13/2020] [Indexed: 01/22/2023] Open
Abstract
Pediatric Low Grade Gliomas (PLGGs) display heterogeneity regarding morphology, genomic drivers and clinical outcomes. The treatment modality dictates the outcome and optimizing patient management can be challenging. In this study, we profiled a targeted panel of cancer-related genes in 37 Saudi Arabian patients with pLGGs to identify genetic abnormalities that can inform prognostic and therapeutic decision-making. We detected genetic alterations (GAs) in 97% (36/37) of cases, averaging 2.51 single nucleotide variations (SNVs) and 0.91 gene fusions per patient. The KIAA1549-BRAF fusion was the most common alteration (21/37 patients) followed by AFAP1-NTRK2 (2/37) and TBLXR-PI3KCA (2/37) fusions that were observed at much lower frequencies. The most frequently mutated) genes were NOTCH1-3 (7/37), ATM (4/37), RAD51C (3/37), RNF43 (3/37), SLX4 (3/37) and NF1 (3/37). Interestingly, we identified a GOPC-ROS1 fusion in an 8-year-old patient whose tumor lacked BRAF alterations and histologically classified as low grade glioma. The patient underwent gross total resection (GTR). The patient is currently disease free. To our knowledge this is the first report of GOPC-ROS1 fusion in PLGG. Taken together, we reveal the genetic characteristics of pLGG patients can enhance diagnostics and therapeutic decisions. In addition, we identified a GOPC-ROS1 fusion that may be a biomarker for pLGG.
Collapse
Affiliation(s)
- Nahla A. Mobark
- Department of Paediatric Oncology Comprehensive Cancer Centre, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Musa Alharbi
- Department of Paediatric Oncology Comprehensive Cancer Centre, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Lamees Alhabeeb
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Latifa AlMubarak
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Rasha Alaljelaify
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Mariam AlSaeed
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Amal Almutairi
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Fatmah Alqubaishi
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Maqsood Ahmad
- Department of Neuroscience, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Ayman Al-Banyan
- Department of Neuroscience, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Fahad E. Alotabi
- Department of Neuroscience, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Duna Barakeh
- Department of Pathology, King Khalid Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Malak AlZahrani
- Department of Pathology, King Khalid Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Hisham Al-Khalidi
- Department of Pathology, King Khalid Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrazag Ajlan
- Department of Pathology, King Khalid Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Lori A. Ramkissoon
- Department of Neurosurgery, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Shakti H. Ramkissoon
- Wake Forest Comprehensive Cancer Center and Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
- Foundation Medicine Inc., Morrisville, NC, United States of America
| | - Malak Abedalthagafi
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
- * E-mail:
| |
Collapse
|
5
|
PATZ1 Is Overexpressed in Pediatric Glial Tumors and Correlates with Worse Event-Free Survival in High-grade Gliomas. Cancers (Basel) 2019; 11:cancers11101537. [PMID: 31614588 PMCID: PMC6826955 DOI: 10.3390/cancers11101537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 11/25/2022] Open
Abstract
Glial tumors are the leading cause of cancer-related death and morbidity in children. Their diagnosis, mainly based on clinical and histopathological factors, is particularly challenging because of their high molecular heterogeneity. Thus, tumors with identical histotypes could result in variable biological behaviors and prognoses. The PATZ1 gene has been recently shown to be expressed in adult gliomas, including glioblastomas, where it correlates with the proneural subtype and with a better prognosis. Here, we analyzed the expression of PATZ1 in pediatric gliomas, first at mRNA level in a public database, and then at protein level, by immunohistochemistry, in a cohort of 52 glial brain tumors from young patients aged from 6 months to 16 years. As for adult tumors, we show that PATZ1 is enriched in glial tumors compared to the normal brain, where it correlates positively and negatively with a proneural and mesenchymal signature, respectively. Moreover, we show that PATZ1 is expressed at variable levels in our cohort of tumors. Higher expression was detected in high-grade than low-grade gliomas, suggesting a correlation with the malignancy. Among high-grade gliomas, higher levels of PATZ1 have consistently been found to correlate with worse event-free survival. Therefore, our study may imply new diagnostic opportunities for pediatric gliomas.
Collapse
|
6
|
Sciortino T, Fernandes B, Conti Nibali M, Gay LG, Rossi M, Lopci E, Colombo AE, Elefante MG, Pessina F, Bello L, Riva M. Frameless stereotactic biopsy for precision neurosurgery: diagnostic value, safety, and accuracy. Acta Neurochir (Wien) 2019; 161:967-974. [PMID: 30895395 DOI: 10.1007/s00701-019-03873-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/06/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Stereotactic biopsy is consistently employed to characterize cerebral lesions in patients who are not suitable for microsurgical resection. In the past years, technical improvement and neuroimaging advancements contributed to increase the diagnostic yield, the safety, and the application of this procedure. Currently, in addition to histological diagnosis, the molecular analysis is considered essential in the diagnostic process to properly select therapeutic and prognostic algorithms in a personalized approach. The present study reports our experience with frameless stereotactic brain biopsy in this molecular era. METHODS One hundred forty consecutive patients treated from January 2013 to September 2018 were analyzed. Biopsies were performed using the Brainlab Varioguide® frameless stereotactic system. Patients' clinical and demographic data, the time of occupation of the operating room, the surgical time, the morbidity, and the diagnostic yield in providing a histological and molecular diagnosis were recorded and evaluated. RESULTS The overall diagnostic yield was 93.6% with nine procedures resulting non-diagnostic. Among 110 patients with glioma, the IDH-1 mutational status was characterized in 108 cases (98.2%), resulting wild-type in all subjects but 3; MGMT methylation was characterized in 96 cases (87.3%), resulting present in 60 patients, and 1p/19q codeletion was founded in 6 of the 20 cases of grade II-III gliomas analyzed. All the specimens were apt for molecular analysis when performed. Bleeding requiring surgical drainage occurred in 2.1% of the cases; 8 (5.7%) asymptomatic hemorrhages requiring no treatment were observed. No biopsy-related mortality was recorded. Median length of hospital stay was 5 days (IQR 4-8) with mean surgical time of 60.77 min (± 23.12) and 137.44 ± 24.1 min of total occupation time of the operative room. CONCLUSIONS Stereotactic frameless biopsy is a safe, feasible, and fast procedure to obtain a histological and molecular diagnosis.
Collapse
Affiliation(s)
- Tommaso Sciortino
- Università degli Studi di Milano, Milan, Italy
- Unit of Oncological Neurosurgery, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), Italy
| | - Bethania Fernandes
- Unit of Pathology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), Italy
| | - Marco Conti Nibali
- Università degli Studi di Milano, Milan, Italy
- Unit of Oncological Neurosurgery, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), Italy
| | - Lorenzo G Gay
- Università degli Studi di Milano, Milan, Italy
- Unit of Oncological Neurosurgery, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), Italy
| | - Marco Rossi
- Università degli Studi di Milano, Milan, Italy
- Unit of Oncological Neurosurgery, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), Italy
| | - Egesta Lopci
- Unit of Nuclear Medicine, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), Italy
| | - Anna E Colombo
- Unit of Pathology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), Italy
| | - Maria G Elefante
- Unit of Pathology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), Italy
| | - Federico Pessina
- Unit of Oncological Neurosurgery, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano (MI), Italy
| | - Lorenzo Bello
- Unit of Oncological Neurosurgery, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Riva
- Unit of Oncological Neurosurgery, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), Italy.
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|