1
|
Saiz E, Banicevic I, Espinoza Torres S, Bertata S, Picasso G, O'Brien M, Radu A. Portable, low-cost, Raspberry Pi-based optical sensor (PiSENS): continuous monitoring of atmospheric nitrogen dioxide. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:482-491. [PMID: 36606573 DOI: 10.1039/d2ay01433e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We have developed a sensing system that utilizes a low-cost computer (Raspberry Pi) and its imaging camera as an optical sensing core for the continuous detection of NO2 in the air (PiSENS-A). The sensor is based on colour development as a consequence of the interaction of the gas with an absorbing solution. The PiSENS-A is thoroughly calibrated over the hourly mean which is used as one of the key metrics in evaluating air quality. The calibration was performed in the range of 0 < [NO2] < 476 μg m-3 chosen to contain the threshold used to determine compliance to the UK's Air Quality Standard Regulations (2010) expressed as a maximum of 18 permitted exceedances of [NO2]hourly mean = 200 μg per m3 per year. Lab-based measurements were evaluated against UV-vis. The average precision expressed as a relative standard deviation was: RSD% = 2.8%, while the correlation of mock samples was excellent (Pearson's r = 1.000). Field-based measurements were evaluated against chemiluminescence-based instrument exhibiting a correlation coefficient of R2 = 0.993. The PiSENS-A was also deployed as an independent air quality analyser at the Keele University campus.
Collapse
Affiliation(s)
- Ernesto Saiz
- Lennard-Jones Laboratories, Birchall Centre, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| | - Ivana Banicevic
- Faculty of Technical Sciences, University of Montenegro, Montenegro
| | - Sergio Espinoza Torres
- Laboratory of Physical Chemistry Research, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Lima 25, Peru
| | - Salma Bertata
- Lennard-Jones Laboratories, Birchall Centre, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| | - Gino Picasso
- Laboratory of Physical Chemistry Research, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Lima 25, Peru
| | - Matthew O'Brien
- Lennard-Jones Laboratories, Birchall Centre, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| | - Aleksandar Radu
- School of Chemistry, Joseph Banks Laboratories, University of Lincoln, Green Lane, Lincoln, LN6 7DL, UK.
| |
Collapse
|
2
|
Local vehicles add nitrogen to moss biomonitors in a low-traffic protected wilderness area as revealed by a long-term isotope study. J Nat Conserv 2022. [DOI: 10.1016/j.jnc.2022.126292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Park B, Kang H, Han S, Kim HU, Cho Y, Huh YS, Kang SM. The Fabrication of Cesium Lead Bromide-Coated Cellulose Nanocomposites and Their Effect on the Detection of Nitrogen Gas. SENSORS (BASEL, SWITZERLAND) 2022; 22:7737. [PMID: 36298086 PMCID: PMC9611072 DOI: 10.3390/s22207737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
In this work, we fabricate cesium lead bromide nanofibers (CsPbBr3 NFs) via the attachment of cesium lead bromide nanocrystals (CsPbBr3 NCs) on the surface of electrospun cellulose nanofibers (CNFs) and employ them in a sensor to effectively detect gaseous nitrogen. The CsPbBr3 NFs are produced initially by producing CsPbBr3 NCs through hot injection and dispersing on hexane, followed by dipping CNFs and ultrasonicate for 1 h. Morphological characterization through visual, SEM and TEM image, and crystalline structure analysis by XRD and FT-IR analysis of CsPbBr3 NFs and NCs show similar spectra except for PL due to unavoidable damage during the ultrasonication. Gaseous nitrogen is subsequently detected using the photoluminescence (PL) property of CsPbBr3 NFs, in which the PL intensity dramatically decreases under various flow rate. Therefore, we believe that the proposed CsPbBr3 NFs show significant promise for use in detection sensors in various industrial field and decrease the potential of fatal damage to workers due to suffocation.
Collapse
Affiliation(s)
- Bumjun Park
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Haneul Kang
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Soobin Han
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Hyeong-U Kim
- Department of Plasma Engineering, Korea Institute of Machinery & Materials, Daejeon 34103, Korea
| | - Youngjin Cho
- Food Safety and Distribution Research Group, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Korea
| | - Yun Suk Huh
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Sung-Min Kang
- Department of Green Chemical Engineering, Sangmyung University, 31 Sangmyungdae-gil, Cheonan 31066, Chungcheongnam-do, Korea
- Future Environment and Energy Research Institute, Sangmyung University, 31 Sangmyungdae-gil, Cheonan 31066, Chungcheongnam-do, Korea
| |
Collapse
|
4
|
Nodeh-Farahani D, Bentley JN, Crilley LR, Caputo CB, VandenBoer TC. A boron dipyrromethene (BODIPY) based probe for selective passive sampling of atmospheric nitrous acid (HONO) indoors. Analyst 2021; 146:5756-5766. [PMID: 34515696 DOI: 10.1039/d1an01089a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
People spend up to 90% of their time indoors, and yet our understanding of indoor air quality and the chemical processes driving it are poorly understood, despite levels of key pollutants typically being higher indoors compared to outdoors. Nitrous acid (HONO) is a species that drives these indoor chemical processes, with potentially detrimental health effects. In this work, a BODIPY-based probe was synthesized with the aim of developing the first selective passive sampler for atmospheric HONO. Our probe and its products are easily detected by UV-Vis spectroscopy with molar extinct coefficients of 37 863 and 33 787 M-1 cm-1, respectively, and a detection limit of 14.8 ng mL-1. When protonated, the probe fluoresces with a quantum yield of 33%, which is turned off upon reaction. The synthesized BODIPY probe was characterized using NMR and UV-Vis spectroscopy. Products were characterized by UV-Vis and ultra high-resolution mass spectrometry. The reaction kinetics of the probe with nitrite was studied using UV-Vis spectroscopy, which had a pseudo-first-order rate of k = 7.7 × 10-4 s-1. The rapid reaction makes this probe suitable for targeted ambient sampling of HONO. This was investigated through a proof-of-concept experiment with gaseous HONO produced by a custom high-purity calibration source delivering the sample to the BODIPY probe in an acidic aqueous solution in clean air and a real indoor air matrix. The probe showed quantitative uptake of HONO in both cases to form the same products observed from reaction with nitrite, with no indication of interferences from ambient NO or NO2. The chemical and physical characteristics of the probe therefore make it ideal for use in passive samplers for selective sampling of HONO from the atmosphere.
Collapse
Affiliation(s)
| | - Jordan N Bentley
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada.
| | - Leigh R Crilley
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada.
| | | | | |
Collapse
|
5
|
Singh D, Dahiya M, Kumar R, Nanda C. Sensors and systems for air quality assessment monitoring and management: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112510. [PMID: 33827002 DOI: 10.1016/j.jenvman.2021.112510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/20/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Air quality (AQ) is a global concern for human health management. Therefore, air quality monitoring (AQM) and its management is a must-needed activity for the current world environment. A systematic review of various sensors and systems for AQ management may strengthen our understanding of the monitoring and management of AQ. Thus, the current review presents details on sensors/systems available for AQ assessment, monitoring, and management. First, we had gone through the published literature based on special keywords including AQM, Particulate Matter (PM), Carbon Mono-oxide (CO), Sulfur di-Oxide (SO2), and Nitrogen di-Oxide (NO2) among others, and identified the current scenario of research in AQ management. We discussed various sensors/systems available for the AQ management based on self-conceptualised five major categories including, ground-based AQS (wet chemistry) systems, ground-based digital sensors systems, aerial sensors systems, satellite-based sensors systems, and integrated systems. The prospects in the field of AQ assessment and management (AQA&M) were then discussed in detail. We concluded that the AQA&M can be better achieved by coupling new technologies like ground-based smart sensors, satellite remote sensing sensors, Geospatial technologies, and computational technologies like machine learning, Artificial intelligence, and Internet of Things (IoT). The current work may lead to a junction of information for connecting these sensors/systems, which is expected to be beneficial in future AQ research and management.
Collapse
Affiliation(s)
- Dharmendra Singh
- Haryana Space Applications Centre, CRID, CCS HAU Campus, Hisar, Haryana, India.
| | - Meenakshi Dahiya
- Haryana Space Applications Centre, CRID, CCS HAU Campus, Hisar, Haryana, India
| | - Rahul Kumar
- Larsen & Tourbro Infotech Limited, Gurugram, Haryana, India
| | - Chintan Nanda
- Haryana Space Applications Centre, CRID, CCS HAU Campus, Hisar, Haryana, India
| |
Collapse
|
6
|
Lu H, Zheng C, Zhang L, Liu Z, Song F, Li X, Zhang Y, Wang Y. A Remote Sensor System Based on TDLAS Technique for Ammonia Leakage Monitoring. SENSORS 2021; 21:s21072448. [PMID: 33918129 PMCID: PMC8036584 DOI: 10.3390/s21072448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 01/22/2023]
Abstract
The development of an efficient, portable, real-time, and high-precision ammonia (NH3) remote sensor system is of great significance for environmental protection and citizens’ health. We developed a NH3 remote sensor system based on tunable diode laser absorption spectroscopy (TDLAS) technique to measure the NH3 leakage. In order to eliminate the interference of water vapor on NH3 detection, the wavelength-locked wavelength modulation spectroscopy technique was adopted to stabilize the output wavelength of the laser at 6612.7 cm−1, which significantly increased the sampling frequency of the sensor system. To solve the problem in that the light intensity received by the detector keeps changing, the 2f/1f signal processing technique was adopted. The practical application results proved that the 2f/1f signal processing technique had a satisfactory suppression effect on the signal fluctuation caused by distance changing. Using Allan deviation analysis, we determined the stability and limit of detection (LoD). The system could reach a LoD of 16.6 ppm·m at an average time of 2.8 s, and a LoD of 0.5 ppm·m at an optimum averaging time of 778.4 s. Finally, the measurement result of simulated ammonia leakage verified that the ammonia remote sensor system could meet the need for ammonia leakage detection in the industrial production process.
Collapse
Affiliation(s)
| | - Chuantao Zheng
- Correspondence: (C.Z.); (X.L.); Tel.: +86-137-5609-0979 (C.Z.)
| | | | | | | | - Xiuying Li
- Correspondence: (C.Z.); (X.L.); Tel.: +86-137-5609-0979 (C.Z.)
| | | | | |
Collapse
|
7
|
Zhou R, Niu L, Hu Y, Qi Q, Huang W, Yang L. A novel dual-function fluorescent probe for the rapid detection of bisulfite and hydrogen peroxide in aqueous solution and living cells. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 248:119226. [PMID: 33296749 DOI: 10.1016/j.saa.2020.119226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 02/05/2023]
Abstract
In this work, Hcy-OB, a novel hemicyanine-based biocompatible dual-function fluorescence probe for bisulfite and H2O2 detection is designed and synthesized. Based on a 1,4-addition reaction, Hcy-OB can be used for bisulfite detection with fast response, high sensitivity and low detection limit (120 nM). In addition, the probe is successfully applied to the detection of bisulfite in aqueous solution. Furthermore, Hcy-OB shows excellent performance for hydrogen peroxide detection with the oxidation of phenylboronic acid. Hcy-OB shows excellent selectivity to H2O2 over other interfering substances with detection limit of H2O2 is calculated to be 70 nM. Most importantly, due to its good cell membrane permeability and low cytotoxicity, Hcy-OB has been applied to monitor and image H2O2 in living cells and mice.
Collapse
Affiliation(s)
- Ruqiao Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Longxing Niu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, PR China
| | - Yuefu Hu
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Qingrong Qi
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wencai Huang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
8
|
Yang F, Zhang W, Zhao Y, Ji Y, Liu B, Zhou K. Optimization of Working Conditions by Response Surface Methodology of Sulfur Dioxide Gas Sensors Based on Au/CoO‐2La
2
WO
6
Nanoparticles. ChemistrySelect 2020. [DOI: 10.1002/slct.202001415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Fuxiu Yang
- Biochemical Engineering College Beijing Union University Beijing 100023 China
| | - Wenjuan Zhang
- Biochemical Engineering College Beijing Union University Beijing 100023 China
| | - Youxi Zhao
- Biochemical Engineering College Beijing Union University Beijing 100023 China
- Beijing Key Laboratory of Biomass Waste Resource Utilization Beijing 100023 China
| | - Yizhi Ji
- Biochemical Engineering College Beijing Union University Beijing 100023 China
- Beijing Key Laboratory of Biomass Waste Resource Utilization Beijing 100023 China
| | - Baining Liu
- Biochemical Engineering College Beijing Union University Beijing 100023 China
- Beijing Key Laboratory of Biomass Waste Resource Utilization Beijing 100023 China
| | - Kaowen Zhou
- Biochemical Engineering College Beijing Union University Beijing 100023 China
- Beijing Key Laboratory of Biomass Waste Resource Utilization Beijing 100023 China
| |
Collapse
|
9
|
Zhou R, Cui G, Hu Y, Qi Q, Huang W, Yang L. An effective biocompatible fluorescent probe for bisulfite detection in aqueous solution, living cells, and mice. RSC Adv 2020; 10:25352-25357. [PMID: 35517487 PMCID: PMC9055347 DOI: 10.1039/d0ra03329d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/05/2020] [Indexed: 02/05/2023] Open
Abstract
Sulfur dioxide, an air pollutant, is easily hydrated to sulfites and bisulfites and extremely harmful to human health. On the other hand, endogenous sulfur dioxide is the fourth gasotransmitter. In view of the above, it is worth developing an effective method for the detection of these compounds. In this paper, a novel colorimetric fluorescent probe (Hcy-Mo), based on hemi-cyanine, for bisulfites is reported. Hcy-Mo shows excellent selectivity for bisulfites over various other species including cysteine, glutathione, CN−, and HS−, and undergoes 1,4-addition reactions at the C-4 atom of the ethylene group. The reaction can be completed in 30 s in a PBS buffer solution and displays high sensitivity (limit of detection is 80 nM) for bisulfites. Test paper experiments show that the probe can be used for bisulfite detection in aqueous solutions. In addition, Hcy-Mo exhibits excellent cell permeability and low cytotoxicity for the successful detection of bisulfites in living MDA-MB-231 cells and in living mice, implying that this probe would be of great benefit to biological researchers for investigating the detailed biological and pharmacological functions of bisulfites in biological systems. Sulfur dioxide, an air pollutant, is easily hydrated to sulfites and bisulfites and extremely harmful to human health.![]()
Collapse
Affiliation(s)
- Ruqiao Zhou
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
- Sichuan University
- Chengdu
- P. R. China
| | - Guiling Cui
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - Yuefu Hu
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - Qingrong Qi
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - Wencai Huang
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
- Sichuan University
- Chengdu
- P. R. China
| |
Collapse
|
10
|
Acharya P, Sreekesh S, Kulshrestha U, Gupta G. Characterisation of emission from open-field burning of crop residue during harvesting period in north-west India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:663. [PMID: 30345463 DOI: 10.1007/s10661-018-6999-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
Open-field crop residue burning is one of the important sources of atmospheric pollution in north-west India during the harvesting period. In this work, we studied NO2 and SO2 concentrations and physical and chemical properties of aerosols from open-field combustion of rice and wheat residue. NO2 and SO2 were analysed using UV-spectrophotometer and ion chromatography (IC) respectively. The aerosol particles were analysed by scan electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX) for their physical dimension (size distribution) and elemental composition, and by IC for their ionic content. The measured concentrations of gases during burning showed rice straw burning spews more NO2 and SO2 than wheat straw burning. The calculated size of the particles ranged from 0.26 to 151.09 μm with high standard deviation. The median diameter of 1.64 μm (± 6.9) represented the central tendency of the particles emitted due to this combustion process. Comparative content analysis revealed that rice-borne particles are richer in Na, K, Al, Si and Zn, whereas, wheat-borne particles are more abundant in C, Mg, Fe, P and Cl. The results from IC and SEM-EDX evidenced the presence of fluoride, sulphate, carbonate, chloride, oxides and silicate compounds in particles. The emission of greenhouse gases (GHGs) and aerosols with this particle chemistry increases the atmospheric opacity through the absorption and scattering of incoming radiation at a significant amount in the UV-IR range causing high aerosol optical depth (AOD).
Collapse
Affiliation(s)
- Prasenjit Acharya
- Centre for the Study of Regional Development, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Sreedharan Sreekesh
- Centre for the Study of Regional Development, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Umesh Kulshrestha
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Gyan Gupta
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
11
|
Tsai SH, Basu S, Huang CY, Hsu LC, Lin YG, Horng RH. Deep-Ultraviolet Photodetectors Based on Epitaxial ZnGa 2O 4 Thin Films. Sci Rep 2018; 8:14056. [PMID: 30232465 PMCID: PMC6145910 DOI: 10.1038/s41598-018-32412-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/29/2018] [Indexed: 11/16/2022] Open
Abstract
A single-crystalline ZnGa2O4 epilayer was successfully grown on c-plane (0001) sapphire substrate by metal-organic chemical vapor deposition. This epilayer was used as a ternary oxide semiconductor for application in high-performance metal–semiconductor–metal photoconductive deep-ultraviolet (DUV) photodetectors (PDs). At a bias of 5 V, the annealed ZnGa2O4 PDs showed better performance with a considerably low dark current of 1 pA, a responsivity of 86.3 A/W, cut-off wavelength of 280 nm, and a high DUV-to-visible discrimination ratio of approximately 107 upon exposure to 230 nm DUV illumination than that of as-grown ZnGa2O4 PDs. The as-grown PDs presented a dark current of 0.5 mA, a responsivity of 2782 A/W at 230 nm, and a photo-to-dark current contrast ratio of approximately one order. The rise time of annealed PDs was 0.5 s, and the relatively quick decay time was 0.7 s. The present results demonstrate that annealing process can reduce the oxygen vacancy defects and be potentially applied in ZnGa2O4 film-based DUV PD devices, which have been rarely reported in previous studies.
Collapse
Affiliation(s)
- Si-Han Tsai
- Institute of Electronics, National Chiao Tung University, Hsinchu, 300, Taiwan, Republic of China
| | - Sarbani Basu
- Institute of Electronics, National Chiao Tung University, Hsinchu, 300, Taiwan, Republic of China
| | - Chiung-Yi Huang
- Institute of Electronics, National Chiao Tung University, Hsinchu, 300, Taiwan, Republic of China
| | - Liang-Ching Hsu
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu, 300, Taiwan, Republic of China
| | - Yan-Gu Lin
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu, 300, Taiwan, Republic of China
| | - Ray-Hua Horng
- Institute of Electronics, National Chiao Tung University, Hsinchu, 300, Taiwan, Republic of China. .,Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, 300, Taiwan, Republic of China.
| |
Collapse
|
12
|
Cook EM, Sponseller R, Grimm NB, Hall SJ. Mixed method approach to assess atmospheric nitrogen deposition in arid and semi-arid ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:617-630. [PMID: 29705717 DOI: 10.1016/j.envpol.2018.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/12/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Arid and semi-arid ecosystems (aridlands) cover a third of Earth's terrestrial surface and contain organisms that are sensitive to low level atmospheric pollutants. Atmospheric nitrogen (N) inputs to aridlands are likely to cause changes in plant community composition, fire frequency, and carbon cycling and storage. However, few studies have documented long-term rates of atmospheric N inputs in aridlands because dry deposition is technically difficult to quantify, and extensive sampling is needed to capture fluxes with spatially and temporally heterogeneous rainfall patterns. Here, we quantified long-term spatial and temporal patterns of inorganic N deposition in protected aridland ecosystems across an extensive urban-rural gradient using multiple sampling methods. We compared long-term rates of N deposition from ion-exchange resin (IER) collectors (bulk and throughfall, 2006-2015), wet-dry bucket collectors (2006-2015), and dry deposition from the inferential method using passive samplers (2010-2012). From mixed approaches with IER collectors and inferential methods, we determined that 7.2 ± 0.4 kgNha-1y-1 is deposited to protected Sonoran Desert within metropolitan Phoenix, Arizona and 6.1 ± 0.3 kgNha-1y-1 in nearby desert ecosystems. Regional scale models overestimated deposition rates for our sampling period by 60% and misidentified hot spots of deposition across the airshed. By contrast, the easy-deployment IER throughfall collectors showed minimal spatial variation across the urban-rural gradient and underestimated deposition fluxes by 54%, largely because of underestimated dry deposition in throughfall. However, seasonal sampling of the IER collectors over 10 years allowed us to capture significant seasonal variation in N deposition and the importance of precipitation timing. These results, derived from the longest, spatially and temporally explicit dataset in drylands, highlight the need for long-term, mixed methods to estimate atmospheric nutrient enrichment to aridlands in a rapidly changing world.
Collapse
Affiliation(s)
- Elizabeth M Cook
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| | - Ryan Sponseller
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Nancy B Grimm
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA; Julie Ann Wrigley Global Institute of Sustainability, Arizona State University, Tempe, AZ, 85287, USA
| | - Sharon J Hall
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA; Julie Ann Wrigley Global Institute of Sustainability, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
13
|
Pancreatic ductal adenocarcinoma can be detected by analysis of volatile organic compounds (VOCs) in alveolar air. BMC Cancer 2018; 18:529. [PMID: 29728093 PMCID: PMC5935919 DOI: 10.1186/s12885-018-4452-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Background In the last decade many studies showed that the exhaled breath of subjects suffering from several pathological conditions has a peculiar volatile organic compound (VOC) profile. The objective of the present work was to analyse the VOCs in alveolar air to build a diagnostic tool able to identify the presence of pancreatic ductal adenocarcinoma in patients with histologically confirmed disease. Methods The concentration of 92 compounds was measured in the end-tidal breath of 65 cases and 102 controls. VOCs were measured with an ion-molecule reaction mass spectrometry. To distinguish between subjects with pancreatic adenocarcinomas and controls, an iterated Least Absolute Shrinkage and Selection Operator multivariate Logistic Regression model was elaborated. Results The final predictive model, based on 10 VOCs, significantly and independently associated with the outcome had a sensitivity and specificity of 100 and 84% respectively, and an area under the ROC curve of 0.99. For further validation, the model was run on 50 other subjects: 24 cases and 26 controls; 23 patients with histological diagnosis of pancreatic adenocarcinomas and 25 controls were correctly identified by the model. Conclusions Pancreatic cancer is able to alter the concentration of some molecules in the blood and hence of VOCs in the alveolar air in equilibrium. The detection and statistical rendering of alveolar VOC composition can be useful for the clinical diagnostic approach of pancreatic neoplasms with excellent sensitivity and specificity. Electronic supplementary material The online version of this article (10.1186/s12885-018-4452-0) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Tian Y, Zhang X, Shen H, Liu A, Zhao Z, Chen ML, Chen XW. High Time-Resolution Optical Sensor for Monitoring Atmospheric Nitrogen Dioxide. Anal Chem 2017; 89:13064-13068. [PMID: 29134807 DOI: 10.1021/acs.analchem.7b03578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High time-resolution monitoring of nitrogen dioxide (NO2) is of great importance for studying the formation mechanism of aerosols and improving air quality. Based on the Griess-Saltzman (GS) reaction, a portable NO2 optical sensor was developed by employing a porous polypropylene membrane tube (PPMT) integrated gas permeation collector and detector. The PPMT was filled with GS reagents and covered with a coaxial jacket tube for gas collection. Its two ends were respectively fixed with a yellowish-green light-emitting diode and a photodiode for optic signal reception. NO2 was automatically introduced through the collector by two air pumps cooperating with a homemade gas injector. Under the optimized conditions, the device presented good performance for monitoring NO2, such as a limit of detection of 5.1 ppbv (parts per billion by volume), an intraday precision of 4.1% (RSD, relative standard deviation, n = 11, c = 100 ppbv), an interday precision of 5.7% (RSD, n = 2-3 per day for 5 days, c = 100 ppbv), an analysis time of 4.0 min, and a linearity range extended to 700 ppbv. The developed device was successfully applied to analyzing outdoor air with a comparable precision to that of the standard method of China. The high time-resolution characteristic that includes sampling 15 times per hour and a good stability for 10 days of urban air analysis had also been evaluated.
Collapse
Affiliation(s)
- Yong Tian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao 266101, China
| | - Xiaomin Zhang
- Research Center for Analytical Sciences and Department of Chemistry, College of Sciences, Northeastern University , Shenyang 110819, China
| | - Huiyan Shen
- Research Center for Analytical Sciences and Department of Chemistry, College of Sciences, Northeastern University , Shenyang 110819, China
| | - Aifeng Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao 266101, China
| | - Zongshan Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao 266101, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences and Department of Chemistry, College of Sciences, Northeastern University , Shenyang 110819, China
| | - Xu-Wei Chen
- Research Center for Analytical Sciences and Department of Chemistry, College of Sciences, Northeastern University , Shenyang 110819, China
| |
Collapse
|
15
|
Spatio-Temporal Variation and Futuristic Emission Scenario of Ambient Nitrogen Dioxide over an Urban Area of Eastern India Using GIS and Coupled AERMOD-WRF Model. PLoS One 2017; 12:e0170928. [PMID: 28141866 PMCID: PMC5283685 DOI: 10.1371/journal.pone.0170928] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 01/11/2017] [Indexed: 11/20/2022] Open
Abstract
The present study focuses on the spatio-temporal variation of nitrogen dioxide (NO2) during June 2013 to May 2015 and its futuristic emission scenario over an urban area (Durgapur) of eastern India. The concentration of ambient NO2 shows seasonal as well as site specific characteristics. The site with high vehicular density (Muchipara) shows highest NO2 concentration followed by industrial site (DVC- DTPS Colony) and the residential site (B Zone), respectively. The seasonal variation of ambient NO2 over the study area is portrayed by means of Geographical Information System based Digital Elevation Model. Out of the total urban area under consideration (114.982 km2), the concentration of NO2 exceeded the National Ambient Air Quality Standard (NAAQS) permissible limit over an area of 5.000 km2, 0.786 km2 and 0.653 km2 in post monsoon, winter and pre monsoon, respectively. Wind rose diagrams, correlation and regression analyses show that meteorology plays a crucial role in dilution and dispersion of NO2 near the earth’s surface. Principal component analysis identifies vehicular source as the major source of NO2 in all the seasons over the urban region. Coupled AMS/EPA Regulatory Model (AERMOD)–Weather Research and Forecasting (WRF) model is used for predicting the concentration of NO2. Comparison of the observed and simulated data shows that the model overestimates the concentration of NO2 in all the seasons (except winter). The results show that coupled AERMOD–WRF model can overcome the unavailability of hourly surface as well as upper air meteorological data required for predicting the pollutant concentration, but improvement of emission inventory along with better understanding of the sinks and sources of ambient NO2 is essential for capturing the more realistic scenario.
Collapse
|
16
|
Akdemir A. Investigation of the effects of using single-wall carbon nanotubes (SWCNTs) in ozone measurement with passive samplers. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2016; 66:951-958. [PMID: 27572419 DOI: 10.1080/10962247.2016.1184192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/25/2016] [Indexed: 06/06/2023]
Abstract
UNLABELLED Passive samplers are used in air quality monitoring for many years to compete in terms of being economical with continuous measurement systems. In this study, different amounts of single-wall carbon nanotubes (SWCNTs) were added in the impregnation solution of the filters of passive samplers and the effect on the absorption of ozone studied. The results of the measurement of ozone with varying amounts of SWCNTs added to the impregnation solution of the filters of the passive samplers were compared with the results of the continuous ozone measurement system (CS). Measurements were performed for 7 days and 14 days at two different exposure times. The increase of the amount of SWCNTs on the filters of the passive samplers, however, did not have an effect on the measurement of ozone. The measurement results of the passive samplers of the 14-day exposure periods, alternating with the 7-day exposure periods, were lower considerably than the results of the 7-day exposure. IMPLICATIONS The accuracy and the use of passive samplers in SWCNTs are expected to provide high measurement results. Observing the effect of the change in the amount of diffusion of pollutants held in the SWCNT is also one of the expected implications.
Collapse
Affiliation(s)
- A Akdemir
- a Department of Environmental Engineering , Ondokuz Mayis University, Kurupelit Campus , Samsun , Turkey
| |
Collapse
|
17
|
Kerckhoffs J, Wang M, Meliefste K, Malmqvist E, Fischer P, Janssen NAH, Beelen R, Hoek G. A national fine spatial scale land-use regression model for ozone. ENVIRONMENTAL RESEARCH 2015; 140:440-8. [PMID: 25978345 DOI: 10.1016/j.envres.2015.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 05/26/2023]
Abstract
Uncertainty about health effects of long-term ozone exposure remains. Land use regression (LUR) models have been used successfully for modeling fine scale spatial variation of primary pollutants but very limited for ozone. Our objective was to assess the feasibility of developing a national LUR model for ozone at a fine spatial scale. Ozone concentrations were measured with passive samplers at 90 locations across the Netherlands (19 regional background, 36 urban background, 35 traffic). All sites were measured simultaneously during four 2-weekly campaigns spread over the seasons. LUR models were developed for the summer average as the primary exposure and annual average using predictor variables obtained with Geographic Information Systems. Summer average ozone concentrations varied between 32 and 61 µg/m(3). Ozone concentrations at traffic sites were on average 9 µg/m(3) lower compared to regional background sites. Ozone correlated highly negatively with nitrogen dioxide and moderately with fine particles. A LUR model including small-scale traffic, large-scale address density, urban green and a region indicator explained 71% of the spatial variation in summer average ozone concentrations. Land use regression modeling is a promising method to assess ozone spatial variation, but the high correlation with NO2 limits application in epidemiology.
Collapse
Affiliation(s)
- Jules Kerckhoffs
- Institute for Risk Assessment Sciences, University Utrecht, The Netherlands
| | - Meng Wang
- Institute for Risk Assessment Sciences, University Utrecht, The Netherlands
| | - Kees Meliefste
- Institute for Risk Assessment Sciences, University Utrecht, The Netherlands
| | - Ebba Malmqvist
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Sweden
| | - Paul Fischer
- National Institute for Public Health and the Environment, Centre for Sustainability and Environmental Health, Bilthoven, The Netherlands
| | - Nicole A H Janssen
- National Institute for Public Health and the Environment, Centre for Sustainability and Environmental Health, Bilthoven, The Netherlands
| | - Rob Beelen
- Institute for Risk Assessment Sciences, University Utrecht, The Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, University Utrecht, The Netherlands.
| |
Collapse
|
18
|
|
19
|
Naddafi K, Sowlat MH, Safari MH. Integrated assessment of air pollution in tehran, over the period from september 2008 to september 2009. IRANIAN JOURNAL OF PUBLIC HEALTH 2012; 41:77-86. [PMID: 23113138 PMCID: PMC3481676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 12/26/2011] [Indexed: 11/09/2022]
Abstract
BACKGROUND Air pollution is a major problem in urban\industrial areas, like Tehran, and has several impacts on human health. This study aimed at assessing concentrations of criteria air pollutants (CO, SO(2), NO(2), O(3), PM(10)) in Tehran, extracting patterns of hourly, daily, weekly, and monthly variations of concentrations, and making comparisons to National Standards and WHO Guidelines. METHODS Air quality data were taken from Air Quality Control Corporation and 5 sampling stations (out of 13) were selected for analysis according to data availability. Microsoft Excel 2003 was used for data analysis and plotting the charts. RESULTS Patterns of temporal variation (hourly, daily, weekly, and monthly) of air pollutant concentrations were extracted. In some cases extracted patterns matched with the patterns proposed by other researchers. Pollutant concentrations were compared to National Standards and WHO Guidelines and it was observed that in most of the days, we exceeded the limit values. CONCLUSION Air pollution in Tehran is quite high and there are many days that we exceed the standards; therefore appropriate control strategies are needed. Although the number of sampling stations is high enough to be representative of whole city, it is proposed that an independent sampling station is setup to check the validity of the measurements.
Collapse
Affiliation(s)
- K Naddafi
- Dept. of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran,, Iran
| | - MH Sowlat
- Dept. of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran,, Iran,Corresponding Author: Tel: +98 939 5625465, +98 21 66744339 E-mail address:
| | - MH Safari
- Dept. of Environment and Energy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|