1
|
Malloy J, Marlowe E, Jensen CJ, Liu IS, Hulse T, Murray AF, Bryan D, Denes TG, Gilbert DA, Yin G, Liu K. Microstructure-dependent particulate filtration using multifunctional metallic nanowire foams. NANOSCALE 2024; 16:15094-15103. [PMID: 39076072 DOI: 10.1039/d4nr02368d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The COVID-19 pandemic has shown the urgent need for the development of efficient, durable, reusable and recyclable filtration media for the deep-submicron size range. Here we demonstrate a multifunctional filtration platform using porous metallic nanowire foams that are efficient, robust, antimicrobial, and reusable, with the potential to further guard against multiple hazards. We have investigated the foam microstructures, detailing how the growth parameters influence the overall surface area and characteristic feature size, as well as the effects of the microstructures on the filtration performance. Nanogranules deposited on the nanowires during electrodeposition are found to greatly increase the surface area, up to 20 m2 g-1. Surprisingly, in the high surface area regime, the overall surface area gained from the nanogranules has little correlation with the improvement in capture efficiency. However, nanowire density and diameter play a significant role in the capture efficiency of PM0.3 particles, as do the surface roughness of the nanowire fibers and their characteristic feature sizes. Antimicrobial tests on the Cu foams show a >99.9995% inactivation efficiency after contacting the foams for 30 seconds. These results demonstrate promising directions to achieve a highly efficient multifunctional filtration platform with optimized microstructures.
Collapse
Affiliation(s)
- James Malloy
- Department of Physics, Georgetown University, Washington, DC 20057, USA.
| | - Erin Marlowe
- Department of Physics, Georgetown University, Washington, DC 20057, USA.
| | | | - Isaac S Liu
- Department of Physics, Georgetown University, Washington, DC 20057, USA.
- Department of Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Thomas Hulse
- Department of Physics, Georgetown University, Washington, DC 20057, USA.
- Department of Physics, University of Louisville, Louisville, KY 40292, USA
| | - Anne F Murray
- Department of Food Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Daniel Bryan
- Department of Food Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Thomas G Denes
- Department of Food Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Dustin A Gilbert
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Gen Yin
- Department of Physics, Georgetown University, Washington, DC 20057, USA.
| | - Kai Liu
- Department of Physics, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
2
|
de Souza Carolino A, Freitas XMS, Macalia CMA, Soares JC, Soares AC, da Costa Pinto C, Barbosa ARC, de Araújo Bezerra J, Campelo PH, da Silva Paula MM, Lalwani PJ, Inada NM, Țãlu Ș, Malheiro A, Sanches EA. Virus adsorbent systems based on Amazon holocellulose and nanomaterials. Microsc Res Tech 2024; 87:1933-1954. [PMID: 38563156 DOI: 10.1002/jemt.24566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
The environment preservation has been an important motivation to find alternative, functional, and biodegradable materials to replace polluting petrochemicals. The production of nonbiodegradable face masks increased the concentration of microplastics in the environment, highlighting the need for sustainable alternatives, such as the use of local by-products to create efficient and eco-friendly filtering materials. Furthermore, the use of smart materials can reduce the risk of contagion and virus transmission, especially in the face of possible mutations. The development of novel materials is necessary to ensure less risk of contagion and virus transmission, as well as to preserve the environment. Taking these factors into account, 16 systems were developed with different combinations of precursor materials (holocellulose, polyaniline [ES-PANI], graphene oxide [GO], silver nanoparticles [AgNPs], and activated carbon [AC]). Adsorption tests of the spike protein showed that the systems containing GO and AC were the most efficient in the adsorption process. Similarly, plate tests conducted using the VSV-IN strain cultured in HepG2 cells showed that the system containing all phases showed the greatest reduction in viral titer method. In agreement, the biocompatibility tests showed that the compounds extracted from the systems showed low cytotoxicity or no significant cytotoxic effect in human fibroblasts. As a result, the adsorption tests of the spike protein, viral titration, and biocompatibility tests showed that systems labeled as I and J were the most efficient. In this context, the present research has significantly contributed to the technological development of antiviral systems, with improved properties and increased adsorption efficiency, reducing the viral titer and contributing efficiently to public health. In this way, these alternative materials could be employed in sensors and devices for filtering and sanitization, thus assisting in mitigating the transmission of viruses and bacteria. RESEARCH HIGHLIGHTS: Sixteen virus adsorbent systems were developed with different combinations of precursor materials (holocellulose, polyaniline (ES-PANI), graphene oxide (GO), silver nanoparticles (AgNPs), and activated carbon (AC)). The system that included all of the nanocomposites holocellulose, PANI, GO, AgNPs, and AC showed the greatest reduction in viral titration. The biocompatibility tests revealed that all systems caused only mild or moderate cytotoxicity toward human fibroblasts.
Collapse
Affiliation(s)
- Adriano de Souza Carolino
- Laboratory of Nanostructured Polymers (NANOPOL), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | | | | | - Juliana Coatrini Soares
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos, SP, Brazil
| | - Andrey Coatrini Soares
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos, SP, Brazil
| | - Camila da Costa Pinto
- Graduate Program in Physics (PPGFIS), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Aguyda Rayany Cavalcante Barbosa
- Laboratory of Infectious Diseases and Immunology, Fundação Oswaldo Cruz - Instituto Leônidas e Maria Deane (FIOCRUZ-ILMD), Manaus, AM, Brazil
- Graduate Program in Basic and Applied Immunology (PPGIBA), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Jaqueline de Araújo Bezerra
- Analytical Center, Federal Institute of Education, Science and Technology of Amazonas (IFAM), Manaus, AM, Brazil
| | | | | | - Pritesh Jaychand Lalwani
- Laboratory of Infectious Diseases and Immunology, Fundação Oswaldo Cruz - Instituto Leônidas e Maria Deane (FIOCRUZ-ILMD), Manaus, AM, Brazil
- Graduate Program in Basic and Applied Immunology (PPGIBA), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Natalia Mayumi Inada
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos, SP, Brazil
| | - Ștefan Țãlu
- The Directorate of Research, Development and Innovation Management (DMCDI), Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Adriana Malheiro
- Graduate Program in Basic and Applied Immunology (PPGIBA), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
- Laboratory of Genomics (LABGEN), Hospital Foundation of Hematology and Hemotherapy of Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Edgar Aparecido Sanches
- Laboratory of Nanostructured Polymers (NANOPOL), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| |
Collapse
|
3
|
Boroumand S, Majidi RF, Gheibi A, Majidi RF. Selenium nanoparticles incorporated in nanofibers media eliminate H1N1 activity: a novel approach for virucidal antiviral and antibacterial respiratory mask. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2360-2376. [PMID: 38063966 DOI: 10.1007/s11356-023-31202-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
The consecutive viral infectious outbreaks impose severe complications on public health besides the economic burden which led to great interest in antiviral personal protective equipment (PPE). Nanofiber-based respiratory mask has been introduced as a significant barrier to eliminate the airborne transmission from aerosols toward reduction the viral infection spreading. Herein, selenium nanoparticles incorporated in polyamide 6 nanofibers coated on spunbond nonwoven were synthesized via electrospinning technique (PA6@SeNPs), with an average diameter of 180 ± 2 nm. The nanofiber-coated media were tested for 0.3 μm particulate filtration efficiency based on Standard NIOSH (42 CFR 84). PA6@SeNPs had a pressure drop of 45 ± 2 Pa and particulate filtration efficiency of more than 97.33 which is comparable to the N95 respiratory mask. The bacterial killing efficiency of these nanofibers was 91.25% and 16.67% against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively. Furthermore, the virucidal antiviral test for H1N1 infected Madin-Darby Canine Kidney cells (MDCK) exhibited TCID50 of 108.13, 105.88, and 105.5 for 2, 10, and 120 min of exposure times in comparison with 108.5, 107.5, and 106.5 in PA6 nanofibers as control sample. MTT assay indicated excellent biocompatibility of electrospun PA6@SeNP nanofibers on L292 cells. These results propose the PA6@SeNP nanofibers have a high potential to be used as an efficient layer in respiratory masks for protection against respiratory pathogens.
Collapse
Affiliation(s)
| | | | - Ali Gheibi
- Fanavaran Nano-Meghyas (Fnm Co. Ltd.), Tehran, Iran
| | - Reza Faridi Majidi
- Fanavaran Nano-Meghyas (Fnm Co. Ltd.), Tehran, Iran.
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Fiori F, Cossu FL, Salis F, Carboni D, Stagi L, De Forni D, Poddesu B, Malfatti L, Khalel A, Salis A, Casula MF, Anedda R, Lori F, Innocenzi P. In Vitro Antiviral Activity of Hyperbranched Poly-L-Lysine Modified by L-Arginine against Different SARS-CoV-2 Variants. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3090. [PMID: 38132987 PMCID: PMC10745586 DOI: 10.3390/nano13243090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
The emergence of SARS-CoV-2 variants requires close monitoring to prevent the reoccurrence of a new pandemic in the near future. The Omicron variant, in particular, is one of the fastest-spreading viruses, showing a high ability to infect people and evade neutralization by antibodies elicited upon infection or vaccination. Therefore, the search for broad-spectrum antivirals that can inhibit the infectious capacity of SARS-CoV-2 is still the focus of intense research. In the present work, hyperbranched poly-L-lysine nanopolymers, which have shown an excellent ability to block the original strain of SARS-CoV-2 infection, were modified with L-arginine. A thermal reaction at 240 °C catalyzed by boric acid yielded Lys-Arg hyperbranched nanopolymers. The ability of these nanopolymers to inhibit viral replication were assessed for the original, Delta, and Omicron strains of SARS-CoV-2 together with their cytotoxicity. A reliable indication of the safety profile and effectiveness of the various polymeric compositions in inhibiting or suppressing viral infection was obtained by the evaluation of the therapeutic index in an in vitro prevention model. The hyperbranched L-arginine-modified nanopolymers exhibited a twelve-fold greater therapeutic index when tested with the original strain. The nanopolymers could also effectively limit the replication of the Omicron strain in a cell culture.
Collapse
Affiliation(s)
- Federico Fiori
- Laboratory of Materials Science and Nanotechnology (LMNT), CR-INSTM, Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (F.F.); (F.L.C.); (F.S.); (D.C.); (L.S.); (L.M.)
| | - Franca Lucia Cossu
- Laboratory of Materials Science and Nanotechnology (LMNT), CR-INSTM, Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (F.F.); (F.L.C.); (F.S.); (D.C.); (L.S.); (L.M.)
| | - Federica Salis
- Laboratory of Materials Science and Nanotechnology (LMNT), CR-INSTM, Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (F.F.); (F.L.C.); (F.S.); (D.C.); (L.S.); (L.M.)
| | - Davide Carboni
- Laboratory of Materials Science and Nanotechnology (LMNT), CR-INSTM, Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (F.F.); (F.L.C.); (F.S.); (D.C.); (L.S.); (L.M.)
| | - Luigi Stagi
- Laboratory of Materials Science and Nanotechnology (LMNT), CR-INSTM, Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (F.F.); (F.L.C.); (F.S.); (D.C.); (L.S.); (L.M.)
| | - Davide De Forni
- ViroStatics srl, Viale Umberto I, 46, 07100 Sassari, Italy; (D.D.F.); (B.P.); (F.L.)
| | - Barbara Poddesu
- ViroStatics srl, Viale Umberto I, 46, 07100 Sassari, Italy; (D.D.F.); (B.P.); (F.L.)
| | - Luca Malfatti
- Laboratory of Materials Science and Nanotechnology (LMNT), CR-INSTM, Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (F.F.); (F.L.C.); (F.S.); (D.C.); (L.S.); (L.M.)
| | - Abbas Khalel
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Andrea Salis
- Department of Chemical and Geolocial Sciences, University of Cagliari, Cittadella Universitaria SS 554 Bivio Sestu, 09042 Monserrato, Italy;
| | - Maria Francesca Casula
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo, 2, 09123 Cagliari, Italy
| | - Roberto Anedda
- Porto Conte Ricerche srl, Strada Provinciale S.P. 55, Loc. Tramariglio, 07041 Alghero, Italy;
| | - Franco Lori
- ViroStatics srl, Viale Umberto I, 46, 07100 Sassari, Italy; (D.D.F.); (B.P.); (F.L.)
| | - Plinio Innocenzi
- Laboratory of Materials Science and Nanotechnology (LMNT), CR-INSTM, Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (F.F.); (F.L.C.); (F.S.); (D.C.); (L.S.); (L.M.)
| |
Collapse
|
5
|
Bhat S, Pradeep S, Patil SS, Flores-Holguín N, Glossman-Mitnik D, Frau J, Sommano SR, Ali N, Mohany M, Shivamallu C, Prasad SK, Kollur SP. Preliminary Evaluation of Lablab purpureus Phytochemicals for Anti-BoHV-1 Activity Using In Vitro and In Silico Approaches. ACS OMEGA 2023; 8:22684-22697. [PMID: 37396248 PMCID: PMC10308559 DOI: 10.1021/acsomega.3c01478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Lablab purpureus from the Fabaceae family has been reported to have antiviral properties and used in traditional medical systems like ayurveda and Chinese medicine and has been employed to treat a variety of illnesses including cholera, food poisoning, diarrhea, and phlegmatic diseases. The bovine alphaherpesvirus-1 (BoHV-1) is notorious for causing significant harm to the veterinary and agriculture industries. The removal of the contagious BoHV-1 from host organs, particularly in those reservoir creatures, has required the use of antiviral drugs that target infected cells. This study developed LP-CuO NPs from methanolic crude extracts, and FTIR, SEM, and EDX analyses were used to confirm their formation. SEM analysis revealed that the LP-CuO NPs had a spherical shape with particle sizes between 22 and 30 nm. Energy-dispersive X-ray pattern analysis revealed the presence of only copper and oxide ions. By preventing viral cytopathic effects in the Madin-Darby bovine kidney cell line, the methanolic extract of Lablab purpureus and LP-CuO NPs demonstrated a remarkable dose-dependent anti-BoHV-1 action in vitro. Furthermore, molecular docking and molecular dynamics simulation studies of bio-actives from Lablab purpureus against the BoHV-1 viral envelope glycoprotein disclosed effective interactions between all phytochemicals and the protein, although kievitone was found to have the highest binding affinity, with the greatest number of interactions, which was also validated with molecular dynamics simulation studies. Understanding the chemical reactivity qualities of the four ligands was taken into consideration facilitated by the global and local descriptors, which aimed to predict the chemical reactivity descriptors of the studied molecules through the conceptual DFT methodology, which, along with ADMET finding, support the in vitro and in silico results.
Collapse
Affiliation(s)
- Smitha
S. Bhat
- Department
of Biotechnology and Bioinformatics, JSS
Academy of Higher Education and Research, Mysuru 570 015, India
| | - Sushma Pradeep
- Department
of Biotechnology and Bioinformatics, JSS
Academy of Higher Education and Research, Mysuru 570 015, India
| | - Sharanagouda S. Patil
- ICAR-National
Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru 560 064, India
| | - Norma Flores-Holguín
- Laboratorio
Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Chihuahua 31136, Mexico
| | - Daniel Glossman-Mitnik
- Laboratorio
Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Chihuahua 31136, Mexico
| | - Juan Frau
- Departament
de Química, Facultat de Ciences, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| | - Sarana Rose Sommano
- Plant
Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Nemat Ali
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Mohany
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Chandan Shivamallu
- Department
of Biotechnology and Bioinformatics, JSS
Academy of Higher Education and Research, Mysuru 570 015, India
| | - Shashanka K. Prasad
- Department
of Biotechnology and Bioinformatics, JSS
Academy of Higher Education and Research, Mysuru 570 015, India
- Plant
Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Shiva Prasad Kollur
- School
of Physical Sciences, Amrita Vishwa Vidyapeetham,
Mysuru Campus, Mysuru, Karnataka 570 026, India
| |
Collapse
|
6
|
Choi J, Poudel K, Nam KS, Piri A, Rivera-Piza A, Ku SK, Hwang J, Kim JO, Byeon JH. Aero-manufacture of nanobulges for an in-place anticoronaviral on air filters. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130458. [PMID: 36444810 DOI: 10.1016/j.jhazmat.2022.130458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/09/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
The interest in removing contagious viruses from indoor air using ventilation and filtration systems is increasing rapidly because people spend most of the day indoors. The development of an effective platform to regenerate the antiviral function of air filters during use and safe abrogation of used filters containing infectious viruses is a challenging task, because an on-demand safe-by-design manufacture system is essential for in-place antiviral coatings, but it has been rarely investigated. With these considerations, an electrically operable dispenser was prepared for decorating continuous ultrafine Fe-Zn, Fe-Ag, or Fe-Cu particles (<5 nm) onto SiO2 nanobeads (ca. 130 nm) to form nanobulges (i.e., nanoroughness for engaging coronavirus spikes) in the aerosol state for 3 min direct deposition on the air filter surfaces. The resulting nanobulges were exposed to human coronaviruses (HCoV; surrogates of SARS-CoV-2) to assess antiviral function. The results were compared with similar-sized individual Zn, Ag, and Cu particles. The nanobulges exhibited comparable antiviral activity to Zn, Ag, and Cu particles while retaining biosafety in both in vitro and in vivo models because of the significantly smaller metallic fractions. This suggests that the bimetallic bulge structures generate reactive oxygen species and Fenton-mediated hydroxyl radicals for inactivating HCoV.
Collapse
Affiliation(s)
- Jisoo Choi
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Kishwor Poudel
- College of Pharmacy, Yeungnam University, Gyeongsan 38511, Republic of Korea; Wellman Center for Photomedicine, Department of Dermatology, Meassachusetts General Hospital, Harvard Medical School, MA 02114, USA
| | - Kang Sik Nam
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Amin Piri
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Adriana Rivera-Piza
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610 Republic of Korea
| | - Jungho Hwang
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38511, Republic of Korea.
| | - Jeong Hoon Byeon
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
7
|
Lachowicz D, Kmita A, Wirecka R, Berent K, Szuwarzyński M, Zapotoczny S, Pajdak A, Cios G, Mazur-Panasiuk N, Pyrc K, Bernasik A. Aerogels based on cationically modified chitosan and poly(vinyl alcohol) for efficient capturing of viruses. Carbohydr Polym 2023; 312:120756. [PMID: 37059523 DOI: 10.1016/j.carbpol.2023.120756] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
In this study, we developed a new filtering bioaerogel based on linear polyvinyl alcohol (PVA) and the cationic derivative of chitosan (N-[(2-hydroxy-3-trimethylamine) propyl] chitosan chloride, HTCC) with a potential antiviral application. A strong intermolecular network architecture was formed thanks to the introduction of linear PVA chains, which can efficiently interpenetrate the glutaraldehyde(GA)-crosslinked HTCC chains. The morphology of the obtained structures was examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The aerogels and modified polymers' elemental composition (including the chemical environment) was determined using X-ray photoelectron spectroscopy (XPS). New aerogels with more than twice as much developed micro- and mesopore space and BET-specific surface area were obtained concerning the starting sample chitosan aerogel crosslinked by glutaraldehyde (Chit/GA). The results obtained from the XPS analysis showed the presence of cationic 3-trimethylammonium groups on the surface of the aerogel, which can interact with viral capsid proteins. No cytotoxic effect of HTCC/GA/PVA aerogel was also observed on fibroblast cells of the NIH3T3 line. Furthermore, the HTCC/GA/PVA aerogel has been shown that efficiently traps mouse hepatitis virus (MHV) from suspension. The presented concept of aerogel filters for virus capture based on modified chitosan and polyvinyl alcohol has a high application potential.
Collapse
|
8
|
Polyvinylidene fluoride multi-scale nanofibrous membrane modified using N-halamine with high filtration efficiency and durable antibacterial properties for air filtration. J Colloid Interface Sci 2022; 628:627-636. [PMID: 36027773 PMCID: PMC9381945 DOI: 10.1016/j.jcis.2022.08.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/07/2022] [Accepted: 08/11/2022] [Indexed: 12/14/2022]
Abstract
HYPOTHESIS Particulate matter (PM) pollution and the coronavirus (COVID-19) pandemic have increased demand for protective masks. However, typical protective masks only intercept particles and produce peculiar odors if worn for extended periods owing to bacterial growth. Therefore, new protective materials with good filtration and antibacterial capabilities are required. EXPERIMENTS In this study, we prepared multi-scale polyvinylidene fluoride (PVDF) nanofibrous membranes for efficient filtration and durable antibacterial properties via N-halamine modification. FINDINGS The N-halamine-modified nanofibrous membrane (PVDF-PAA-TMP-Cl) had sufficient active chlorine content (800 ppm), and the tensile stress and strain were improved compared with the original membrane, from 6.282 to 9.435 MPa and from 51.3 % to 56.4 %, respectively. To further improve the interception efficiency, ultrafine nanofibers (20-35 nm) were spun on PVDF-PAA-TMP-Cl nanofibrous membranes, and multi-scale PVDF-PAA-TMP-Cl nanofibrous membranes were prepared. These membranes exhibited good PM0.3 interception (99.93 %), low air resistance (79 Pa), promising long-term PM2.5 purification ability, and high bactericidal efficiency (>98 %). After ten chlorination cycles, the antibacterial efficiency against Escherichia coli and Staphylococcus aureus exceeded 90 %; hence, the material demonstrated highly efficient filtration and repeatable antibacterial properties. The results of this study have implications for the development of air and water filtration systems and multi-functional protective materials.
Collapse
|
9
|
Sheraz M, Mir KA, Anus A, Le VCT, Kim S, Nguyen VQ, Lee WR. SARS-CoV-2 airborne transmission: a review of risk factors and possible preventative measures using air purifiers. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2191-2216. [PMID: 36278886 DOI: 10.1039/d2em00333c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resulting worldwide death toll have prompted worries regarding its transmission mechanisms. Direct, indirect, and droplet modes are the basic mechanisms of transmission. SARS-CoV-2 spreads by respiratory droplets (size range >10 μm size ranges), aerosols (5 μm), airborne, and particulate matter. The rapid transmission of SARS-CoV-2 is due to the involvement of tiny indoor air particulate matter (PM2.5), which functions as a vector. SARS-CoV-2 is more contagious in the indoor environment where particulate matter floats for a longer period and greater distances. Extended residence time in the environment raises the risk of SARS-CoV-2 entering the lower respiratory tract, which may cause serious infection and possibly death. To decrease viral transmission in the indoor environment, it is essential to catch and kill the SARS-CoV-2 virus and maintain virus-free air, which will significantly reduce viral exposure concerns. Therefore, effective air filters with anti-viral, anti-bacterial, and anti-air-pollutant characteristics are gaining popularity recently. It is essential to develop cost-effective materials based on nanoparticles and metal-organic frameworks in order to lower the risk of airborne transmission in developing countries. A diverse range of materials play an important role in the manufacturing of effective air filters. We have summarized in this review article the basic concepts of the transmission routes of SARS-CoV-2 virus and precautionary measures using air purifiers with efficient materials-based air filters for the indoor environment. The performance of air-filter materials, challenges and alternative approaches, and future perspectives are also presented. We believe that air purifiers fabricated with highly efficient materials can control various air pollutants and prevent upcoming pandemics.
Collapse
Affiliation(s)
- Mahshab Sheraz
- Research Centre for Climate Change and Energy, Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon-si, 24252, Republic of Korea
- Nano-Innotek Corporation, 123, Digital-ro 26 Gil, Guro-gu, Seoul, South Korea
| | - Kaleem Anwar Mir
- Research Centre for Climate Change and Energy, Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon-si, 24252, Republic of Korea
- Global Change Impact Studies Centre, Ministry of Climate Change, Government of Pakistan, Islamabad, 44000, Pakistan
| | - Ali Anus
- Research Centre for Climate Change and Energy, Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon-si, 24252, Republic of Korea
- Nano-Innotek Corporation, 123, Digital-ro 26 Gil, Guro-gu, Seoul, South Korea
| | - Van Cam Thi Le
- Research Centre for Climate Change and Energy, Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon-si, 24252, Republic of Korea
- Nano-Innotek Corporation, 123, Digital-ro 26 Gil, Guro-gu, Seoul, South Korea
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Seungdo Kim
- Research Centre for Climate Change and Energy, Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon-si, 24252, Republic of Korea
- Nano-Innotek Corporation, 123, Digital-ro 26 Gil, Guro-gu, Seoul, South Korea
- Environment Strategy Development Institute, Hallym University, Chuncheon-si 24252, South Korea
| | - Van Quyet Nguyen
- Nano-Innotek Corporation, 123, Digital-ro 26 Gil, Guro-gu, Seoul, South Korea
| | - Woo Ram Lee
- Department of Chemistry, School of Future Convergence, Hallym University, Engineering Building# 1348, 1 Hallymdaehak-gil, Chuncheon-si 24252, Gangwon-do, South Korea.
| |
Collapse
|
10
|
Hu S, Zheng Z, Tian Y, Zhang H, Wang M, Yu Z, Zhang X. Preparation and Characterization of Electrospun PAN-CuCl2 Composite Nanofiber Membranes with a Special Net Structure for High-Performance Air Filters. Polymers (Basel) 2022; 14:polym14204387. [PMID: 36297966 PMCID: PMC9611402 DOI: 10.3390/polym14204387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
The growing issue of particulate matter (PM) air pollution has given rise to extensive research into the development of high-performance air filters recently. As the core of air filters, various types of electrospun nanofiber membranes have been fabricated and developed. With the novel poly(acrylonitrile) (PAN)-CuCl2 composite nanofiber membranes as the filter membranes, we demonstrate the high PM removal efficiency exceeding 99% and can last a long service time. The nanoscale morphological characteristics of nanofiber membranes were investigated by scanning electron microscopy, transmission electron microscopy, and mercury intrusion porosimeter. It is found that they appear to have a special net structure at specific CuCl2 concentrations, which substantially improves PM removal efficiency. We anticipate the PAN-CuCl2 composite nanofiber membranes will be expected to effectively solve some pressing problems in air filtration.
Collapse
Affiliation(s)
- Shiqian Hu
- Department of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
| | - Zida Zheng
- Department of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
| | - Ye Tian
- Department of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
| | - Huihong Zhang
- Department of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
- Correspondence: (H.Z.); (X.Z.)
| | - Mao Wang
- Nantong Hongda Petrochemical Equipment Manufacturing Co., Ltd., Nantong 226010, China
| | - Zhongwei Yu
- Nantong Hongda Petrochemical Equipment Manufacturing Co., Ltd., Nantong 226010, China
| | - Xiaowei Zhang
- Department of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
- National Laboratory of Solid State Microstructures, Department of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
- Correspondence: (H.Z.); (X.Z.)
| |
Collapse
|
11
|
Dahanayake MH, Athukorala SS, Jayasundera ACA. Recent breakthroughs in nanostructured antiviral coating and filtration materials: a brief review. RSC Adv 2022; 12:16369-16385. [PMID: 35747530 PMCID: PMC9158512 DOI: 10.1039/d2ra01567f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/21/2022] [Indexed: 12/11/2022] Open
Abstract
COVID-19 persists as the most challenging pandemic of the 21st century with a high rate of transmission. The main pathway of SARS-CoV-2 transmission is aerosol-mediated infection transfer through virus-laden droplets that are expelled by infected people, whereas indirect transmission occurs when contact is made with a contaminated surface. This mini review delivers an overview of the current state of knowledge, research directions, and applications by examining the most recent developments in antiviral surface coatings and filters and analyzing their efficiencies. Reusable masks and other personal protective devices with antiviral properties and self-decontamination could be valuable tools in the fight against viral spread. Moreover, antiviral surface coatings that repel pathogens by preventing adhesion or neutralize pathogens with self-sanitizing ability are assumed to be the most desirable for terminating indirect transmission of viruses. Although many nanomaterials have shown high antiviral capacities, additional research is unquestionably required to develop next-generation antiviral agents with unique characteristics to face future viral outbreaks.
Collapse
Affiliation(s)
- Madushani H Dahanayake
- Department of Chemistry, Faculty of Science, University of Peradeniya Sri Lanka
- National Institute of Fundamental Studies Hanthana Kandy Sri Lanka
| | - Sandya S Athukorala
- Department of Chemistry, Faculty of Science, University of Peradeniya Sri Lanka
- Postgraduate Institute of Science, University of Peradeniya Sri Lanka
| | - A C A Jayasundera
- Department of Chemistry, Faculty of Science, University of Peradeniya Sri Lanka
- Division of Mathematics and Science, Missouri Valley College Marshall MO 65340 USA
| |
Collapse
|
12
|
Mallakpour S, Azadi E, Hussain CM. Fabrication of air filters with advanced filtration performance for removal of viral aerosols and control the spread of COVID-19. Adv Colloid Interface Sci 2022; 303:102653. [PMID: 35349924 PMCID: PMC8937611 DOI: 10.1016/j.cis.2022.102653] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 12/15/2022]
Abstract
COVID-19 is caused via the SARS-CoV-2 virus, a lipid-based enveloped virus with spike-like projections. At present, the global epidemic of COVID-19 continues and waves of SARS-CoV-2, the mutant Delta and Omicron variant which are associated with enhanced transmissibility and evasion to vaccine-induced immunity have increased hospitalization and mortality, the biggest challenge we face is whether we will be able to overcome this virus? On the other side, warm seasons and heat have increased the need for proper ventilation systems to trap contaminants containing the virus. Besides, heat and sweating accelerate the growth of microorganisms. For example, medical staff that is in the front line use masks for a long time, and their facial sweat causes microbes to grow on the mask. Nowadays, efficient air filters with anti-viral and antimicrobial properties have received a lot of attention, and are used to make ventilation systems or medical masks. A wide range of materials plays an important role in the production of efficient air filters. For example, metals, metal oxides, or antimicrobial metal species that have anti-viral and antimicrobial properties, including Ag, ZnO, TiO2, CuO, and Cu played a role in this regard. Carbon nanomaterials such as carbon nanotubes, graphene, or derivatives have also shown their role well. In addition, natural materials such as biopolymers such as alginate, and herbal extracts are employed to prepare effective air filters. In this review, we summarized the utilization of diverse materials in the preparation of efficient air filters to apply in the preparation of medical masks and ventilation systems. In the first part, the employing metal and metal oxides is examined, and the second part summarizes the application of carbon materials for the fabrication of air filters. After examination of the performance of natural materials, challenges and progress visions are discussed.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Elham Azadi
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
13
|
Antiviral Biodegradable Food Packaging and Edible Coating Materials in the COVID-19 Era: A Mini-Review. COATINGS 2022. [DOI: 10.3390/coatings12050577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
With the onset of the COVID-19 pandemic in late 2019, and the catastrophe faced by the world in 2020, the food industry was one of the most affected industries. On the one hand, the pandemic-induced fear and lockdown in several countries increased the online delivery of food products, resulting in a drastic increase in single-use plastic packaging waste. On the other hand, several reports revealed the spread of the viral infection through food products and packaging. This significantly affected consumer behavior, which directly influenced the market dynamics of the food industry. Still, a complete recovery from this situation seems a while away, and there is a need to focus on a potential solution that can address both of these issues. Several biomaterials that possess antiviral activities, in addition to being natural and biodegradable, are being studied for food packaging applications. However, the research community has been ignorant of this aspect, as the focus has mainly been on antibacterial and antifungal activities for the enhancement of food shelf life. This review aims to cover the different perspectives of antiviral food packaging materials using established technology. It focuses on the basic principles of antiviral activity and its mechanisms. Furthermore, the antiviral activities of several nanomaterials, biopolymers, natural oils and extracts, polyphenolic compounds, etc., are discussed.
Collapse
|
14
|
Abstract
Air pollution is an increasing concern all over the world due to its adverse effects on human health. It claims thousands of lives every year. Hence, the demand for the ventilator, respirator, facemask, body protection, and hospital air filtration has been surging dramatically during the COVID-19 pandemic. Nanofiber membranes with optimal characteristics, such as a high specific surface area and porous microstructure with interconnected pores, can efficiently capture the fine particles (such as bacteria, fungi, virus, etc.). Recently, various types of polymers have been fabricated as electrospun fibrous membranes to be used as an anti-bacterial or anti-viral air filtration media. This review presents a brief overview of air filtration history and its main mechanisms and then the latest research about air filtration with antibacterial and antiviral properties will be reviewed.
Collapse
Affiliation(s)
- Sima Habibi
- Department of Textile Engineering, Islamic Azad University, Yadegar-e-Imam Khomeini (RAH) Shahr-e Rey Branch, 1815163111 Tehran, Iran
| | - Atieh Ghajarieh
- Young Researchers and Elite Club, Department of Textile Engineering, Yadegar-e-Imam Khomeini (RAH) Shahr-e Rey Branch, Islamic Azad University, 1815163111 Tehran, Iran
| |
Collapse
|