1
|
Khoshnevisan R, Hassanzadeh S, Klein C, Rohlfs M, Grimbacher B, Molavi N, Zamanifar A, Khoshnevisan A, Jafari M, Bagherpour B, Behnam M, Najafi S, Sherkat R. B-cells absence in patients diagnosed as inborn errors of immunity: a registry-based study. Immunogenetics 2024; 76:189-202. [PMID: 38683392 DOI: 10.1007/s00251-024-01342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/05/2024] [Indexed: 05/01/2024]
Abstract
Hypogammaglobulinemia without B-cells is a subgroup of inborn errors of immunity (IEI) which is characterized by a significant decline in all serum immunoglobulin isotypes, coupled with a pronounced reduction or absence of B-cells. Approximately 80 to 90% of individuals exhibit genetic variations in Bruton's agammaglobulinemia tyrosine kinase (BTK), whereas a minority of cases, around 5-10%, are autosomal recessive agammaglobulinemia (ARA). Very few cases are grouped into distinct subcategories. We evaluated phenotypically and genetically 27 patients from 13 distinct families with hypogammaglobinemia and no B-cells. Genetic analysis was performed via whole-exome and Sanger sequencing. The most prevalent genetic cause was mutations in BTK. Three novel mutations in the BTK gene include c.115 T > C (p. Tyr39His), c.685-686insTTAC (p.Asn229llefs5), and c.163delT (p.Ser55GlnfsTer2). Our three ARA patients include a novel homozygous stop-gain mutation in the immunoglobulin heavy constant Mu chain (IGHM) gene, a novel frameshift mutation of the B-cell antigen receptor complex-associated protein (CD79A) gene, a novel bi-allelic stop-gain mutation in the transcription factor 3 (TCF3) gene. Three patients with agammaglobulinemia have an autosomal dominant inheritance pattern, which includes a missense variant in PIK3CD, a novel missense variant in PIK3R1 and a homozygous silent mutation in the phosphoinositide-3-kinase regulatory subunit (RASGRP1) gene. This study broadens the genetic spectrum of hypogammaglobulinemia without B-cells and presented a few novel variants within the Iranian community, which may also have implications in other Middle Eastern populations. Notably, disease control was better in the second affected family member in families with multiple cases.
Collapse
Affiliation(s)
- Razieh Khoshnevisan
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shakiba Hassanzadeh
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Christoph Klein
- Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Meino Rohlfs
- Dept. of Pediatrics, Dr. Von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Bodo Grimbacher
- RESIST-Cluster of Excellence 2155, Hannover Medical School, Hannover, Germany
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
- Clinic for Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
- DZIF-German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signaling Studies, Albert-Ludwigs-University, Freiburg, Germany
| | - Newsha Molavi
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aryana Zamanifar
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Khoshnevisan
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahbube Jafari
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahram Bagherpour
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdiyeh Behnam
- Medical Genetics Laboratory of Genome, Isfahan, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Somayeh Najafi
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
van Leeuwen LPM, Grobben M, GeurtsvanKessel CH, Ellerbroek PM, de Bree GJ, Potjewijd J, Rutgers A, Jolink H, van de Veerdonk FL, van Gils MJ, de Vries RD, Dalm VASH. Immune Responses 6 Months After mRNA-1273 COVID-19 Vaccination and the Effect of a Third Vaccination in Patients with Inborn Errors of Immunity. J Clin Immunol 2023:10.1007/s10875-023-01514-7. [PMID: 37231290 DOI: 10.1007/s10875-023-01514-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
PURPOSE Patients with inborn errors of immunity (IEI) are at increased risk of severe coronavirus disease-2019 (COVID-19). Effective long-term protection against COVID-19 is therefore of great importance in these patients, but little is known about the decay of the immune response after primary vaccination. We studied the immune responses 6 months after two mRNA-1273 COVID-19 vaccines in 473 IEI patients and subsequently the response to a third mRNA COVID-19 vaccine in 50 patients with common variable immunodeficiency (CVID). METHODS In a prospective multicenter study, 473 IEI patients (including X-linked agammaglobulinemia (XLA) (N = 18), combined immunodeficiency (CID) (N = 22), CVID (N = 203), isolated or undefined antibody deficiencies (N = 204), and phagocyte defects (N = 16)), and 179 controls were included and followed up to 6 months after two doses of the mRNA-1273 COVID-19 vaccine. Additionally, samples were collected from 50 CVID patients who received a third vaccine 6 months after primary vaccination through the national vaccination program. SARS-CoV-2-specific IgG titers, neutralizing antibodies, and T cell responses were assessed. RESULTS At 6 months after vaccination, the geometric mean antibody titers (GMT) declined in both IEI patients and healthy controls, when compared to GMT 28 days after vaccination. The trajectory of this decline did not differ between controls and most IEI cohorts; however, antibody titers in CID, CVID, and isolated antibody deficiency patients more often dropped to below the responder cut-off compared to controls. Specific T cell responses were still detectable in 77% of controls and 68% of IEI patients at 6 months post vaccination. A third mRNA vaccine resulted in an antibody response in only two out of 30 CVID patients that did not seroconvert after two mRNA vaccines. CONCLUSION A similar decline in IgG titers and T cell responses was observed in patients with IEI when compared to healthy controls 6 months after mRNA-1273 COVID-19 vaccination. The limited beneficial benefit of a third mRNA COVID-19 vaccine in previous non-responder CVID patients implicates that other protective strategies are needed for these vulnerable patients.
Collapse
Affiliation(s)
- Leanne P M van Leeuwen
- Department of Viroscience, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Travel Clinic, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marloes Grobben
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Corine H GeurtsvanKessel
- Department of Viroscience, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Godelieve J de Bree
- Department of Infectious Diseases, Amsterdam UMC, Amsterdam, The Netherlands
| | - Judith Potjewijd
- Department of Internal Medicine, Division Nephrology and Clinical Immunology, Maastricht UMC, Maastricht, The Netherlands
| | - Abraham Rutgers
- Department of Rheumatology and Clinical Immunology, UMC Groningen, Groningen, The Netherlands
| | - Hetty Jolink
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rory D de Vries
- Department of Viroscience, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Virgil A S H Dalm
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus MC University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
van Leeuwen LP, GeurtsvanKessel CH, Ellerbroek PM, de Bree GJ, Potjewijd J, Rutgers A, Jolink H, van de Veerdonk F, van Gorp EC, de Wilt F, Bogers S, Gommers L, Geers D, Bruns AH, Leavis HL, van Haga JW, Lemkes BA, van der Veen A, de Kruijf-Bazen S, van Paassen P, de Leeuw K, van de Ven AA, Verbeek-Menken PH, van Wengen A, Arend SM, Ruten-Budde AJ, van der Ent MW, van Hagen PM, Sanders RW, Grobben M, van der Straten K, Burger JA, Poniman M, Nierkens S, van Gils MJ, de Vries RD, Dalm VA. Immunogenicity of the mRNA-1273 COVID-19 vaccine in adult patients with inborn errors of immunity. J Allergy Clin Immunol 2022; 149:1949-1957. [PMID: 35421449 PMCID: PMC8996444 DOI: 10.1016/j.jaci.2022.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/27/2022] [Accepted: 04/04/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Patients with inborn errors of immunity (IEI) are at increased risk of severe coronavirus disease-2019 (COVID-19). Effective vaccination against COVID-19 is therefore of great importance in this group, but little is known about the immunogenicity of COVID-19 vaccines in these patients. OBJECTIVES We sought to study humoral and cellular immune responses after mRNA-1273 COVID-19 vaccination in adult patients with IEI. METHODS In a prospective, controlled, multicenter study, 505 patients with IEI (common variable immunodeficiency [CVID], isolated or undefined antibody deficiencies, X-linked agammaglobulinemia, combined B- and T-cell immunodeficiency, phagocyte defects) and 192 controls were included. All participants received 2 doses of the mRNA-1273 COVID-19 vaccine. Levels of severe acute respiratory syndrome coronavirus-2-specific binding antibodies, neutralizing antibodies, and T-cell responses were assessed at baseline, 28 days after first vaccination, and 28 days after second vaccination. RESULTS Seroconversion rates in patients with clinically mild antibody deficiencies and phagocyte defects were similar to those in healthy controls, but seroconversion rates in patients with more severe IEI, such as CVID and combined B- and T-cell immunodeficiency, were lower. Binding antibody titers correlated well to the presence of neutralizing antibodies. T-cell responses were comparable to those in controls in all IEI cohorts, with the exception of patients with CVID. The presence of noninfectious complications and the use of immunosuppressive drugs in patients with CVID were negatively correlated with the antibody response. CONCLUSIONS COVID-19 vaccination with mRNA-1273 was immunogenic in mild antibody deficiencies and phagocyte defects and in most patients with combined B- and T-cell immunodeficiency and CVID. Lowest response was detected in patients with X-linked agammaglobulinemia and in patients with CVID with noninfectious complications. The assessment of longevity of immune responses in these vulnerable patient groups will guide decision making for additional vaccinations.
Collapse
Affiliation(s)
- Leanne P.M. van Leeuwen
- Department of Viroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands,Travel Clinic, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | - Judith Potjewijd
- Department of Internal Medicine, Division of Nephrology and Clinical Immunology, Maastricht UMC, Maastricht, The Netherlands
| | - Abraham Rutgers
- Department of Rheumatology and Clinical Immunology, UMC Groningen, Groningen, The Netherlands
| | - Hetty Jolink
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eric C.M. van Gorp
- Department of Viroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands,Travel Clinic, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Faye de Wilt
- Department of Viroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Susanne Bogers
- Department of Viroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Lennert Gommers
- Department of Viroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Daryl Geers
- Department of Viroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anke H.W. Bruns
- Department of Internal Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Helen L. Leavis
- Department of Internal Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Jelle W. van Haga
- Department of Infectious Diseases, Amsterdam UMC, Amsterdam, The Netherlands
| | - Bregtje A. Lemkes
- Department of Infectious Diseases, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - S.F.J. de Kruijf-Bazen
- Department of Internal Medicine, Division of Nephrology and Clinical Immunology, Maastricht UMC, Maastricht, The Netherlands
| | - Pieter van Paassen
- Department of Internal Medicine, Division of Nephrology and Clinical Immunology, Maastricht UMC, Maastricht, The Netherlands
| | - Karina de Leeuw
- Department of Rheumatology and Clinical Immunology, UMC Groningen, Groningen, The Netherlands
| | | | - Petra H. Verbeek-Menken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Annelies van Wengen
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Sandra M. Arend
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Anja J. Ruten-Budde
- Department of Biostatistics, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marianne W. van der Ent
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - P. Martin van Hagen
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands,Department of Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marloes Grobben
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Karlijn van der Straten
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Judith A. Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Meliawati Poniman
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Stefan Nierkens
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Virgil A.S.H. Dalm
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands,Department of Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands,Corresponding author: Virgil A. S. H. Dalm, MD, PhD, Erasmus University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Cinicola B, Uva A, Leonardi L, Moratto D, Giliani S, Carsetti R, Ferrari S, Zicari AM, Duse M. Case Report: A Case of X-Linked Agammaglobulinemia With High Serum IgE Levels and Allergic Rhinitis. Front Immunol 2020; 11:582376. [PMID: 33224144 PMCID: PMC7674281 DOI: 10.3389/fimmu.2020.582376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/06/2020] [Indexed: 11/13/2022] Open
Abstract
X-linked Agammaglobulinemia (XLA) is a rare genetic disorder of B-lymphocyte differentiation, characterized by the absence or paucity of circulating B cells, markedly reduced levels of all serum immunoglobulin isotypes and lack of specific antibody production. Bruton Tyrosine Kinase (BTK) gene encodes a cytoplasmic tyrosine kinase involved in the B cell maturation and its mutation, blocking B cell differentiation at the pre-B cell stage, and is responsible for XLA. All domains may be affected by the mutation, and the many genotypes are associated with a wide range of clinical presentations. Little is known about genotype-phenotype correlation in this disorder, and factors influencing the phenotype of XLA are not clearly understood. In this report we present a unique case of a young patient affected by XLA. The disease was genetically diagnosed at birth due to a family history of XLA, but during follow up, it was characterized by a CD19+ B cell percentage consistently greater than 2%. He never suffered severe infections, but at two years of age, he developed persistent rhinitis. Thus, total serum IgE levels were measured and detected over the normal range, and specific allergic investigations showed sensitization to dust mites. Further immunological tests (BTK expression, functional “in vitro” B cell proliferation upon CpG stimulation, B cell subset analysis) explained these findings as possible manifestations of a mild XLA phenotype. XLA patients rarely present with allergic manifestations, which could warrant further investigation. High serum IgE levels could be a sign of a mild phenotype, but their role and the mechanisms underlying their production in XLA need to be clarified.
Collapse
Affiliation(s)
- Bianca Cinicola
- Department of Pediatrics, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Andrea Uva
- Department of Pediatrics, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Lucia Leonardi
- Department of Pediatrics, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Daniele Moratto
- Cytogenetic and Medical Genetics Unit, "A. Nocivelli" Institute for Molecular Medicine Spedali Civili Hospital, Brescia, Italy.,Flow Cytometry Unit, Clinical Chemistry Laboratory, Spedali Civili Hospital, Brescia, Italy
| | - Silvia Giliani
- Cytogenetic and Medical Genetics Unit, "A. Nocivelli" Institute for Molecular Medicine Spedali Civili Hospital, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Rita Carsetti
- B Cell Physiopathology Unit, Immunology Research Area, Bambino Gesù Children Hospital, Rome, Italy
| | - Simona Ferrari
- Medical Genetics Unit, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Anna Maria Zicari
- Department of Pediatrics, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Marzia Duse
- Department of Pediatrics, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Eades CP, Armstrong-James DPH. Invasive fungal infections in the immunocompromised host: Mechanistic insights in an era of changing immunotherapeutics. Med Mycol 2019; 57:S307-S317. [DOI: 10.1093/mmy/myy136] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/23/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
AbstractThe use of cytotoxic chemotherapy in the treatment of malignant and inflammatory disorders is beset by considerable adverse effects related to nonspecific cytotoxicity. Accordingly, a mechanistic approach to therapeutics has evolved in recent times with small molecular inhibitors of intracellular signaling pathways involved in disease pathogenesis being developed for clinical use, some with unparalleled efficacy and tolerability. Nevertheless, there are emerging concerns regarding an association with certain small molecular inhibitors and opportunistic infections, including invasive fungal diseases. This is perhaps unsurprising, given that the molecular targets of such agents play fundamental and multifaceted roles in orchestrating innate and adaptive immune responses. Nevertheless, some small molecular inhibitors appear to possess intrinsic antifungal activity and may therefore represent novel therapeutic options in future. This is particularly important given that antifungal resistance is a significant, emerging concern. This paper is a comprehensive review of the state-of-the-art in the molecular immunology to fungal pathogens as applied to existing and emerging small molecular inhibitors.
Collapse
Affiliation(s)
- Christopher P Eades
- Department of Clinical Infection, Royal Free London NHS Foundation Trust, London, UK
| | - Darius P H Armstrong-James
- National Heart and Lung Institute, Imperial College London, UK
- Department of Respiratory Medicine, Royal Brompton & Harefield NHS Foundation Trust, London, UK
| |
Collapse
|
6
|
Management of adverse effects/toxicity of ibrutinib. Crit Rev Oncol Hematol 2019; 136:56-63. [PMID: 30878129 DOI: 10.1016/j.critrevonc.2019.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/27/2019] [Accepted: 02/04/2019] [Indexed: 12/18/2022] Open
Abstract
Bruton tyrosine kinase signaling (BTK) is critical step for B-cell development and immunoglobulin synthesis. Ibrutinib is an orally bioavailable bruton tyrosine kinase inhibitor (BTKi) and forms an irreversible covalent bound to BTK at the Cysteine-481 residue. Ibrutinib has been approved by FDA for the treatment of mantle cell lymphoma, chronic lymphocytic leukemia, Waldenstrom's macroglobulinemia, marginal zone lymphoma and chronic graft-versus-host disease in allogeneic stem cell transplantation. Ibrutinib is generally well tolerated drug with rapid and durable responses but has some side events. The most common side effects are diarrhea, upper respiratory tract infection, bleeding, fatigue and cardiac side effects. These events are generally mild (grade I-II). However atrial fibrillation (AF) and bleeding are important and may be grade III or higher side effects require strict monitoring. Here side effects of ibrutinib have been summarized and important considerations in the management of these adverse events have been reviewed.
Collapse
|
7
|
Padem N, Park L, Antoon JW. Case 1: Abscess in a 9-year-old Boy. Pediatr Rev 2018; 39:310. [PMID: 29858293 DOI: 10.1542/pir.2017-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Nurcicek Padem
- Department of General Pediatrics and Adolescent Medicine and
| | - Lucy Park
- Department of Pediatric Allergy and Immunology, Children's Hospital, University of Illinois Hospital & Health Sciences System, Chicago, IL
| | - James W Antoon
- Department of General Pediatrics and Adolescent Medicine and
| |
Collapse
|
8
|
Oral Bruton tyrosine kinase inhibitors selectively block atherosclerotic plaque-triggered thrombus formation in humans. Blood 2018; 131:2605-2616. [PMID: 29559479 DOI: 10.1182/blood-2017-09-808808] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/14/2018] [Indexed: 11/20/2022] Open
Abstract
Interaction of von Willebrand factor (VWF) with platelet glycoprotein Ib (GPIb) and interaction of collagen with GPVI are essential for thrombus formation on ruptured or eroded atherosclerotic plaques (atherothrombosis). GPIb and GPVI signal through Bruton tyrosine kinase (Btk), which can be blocked irreversibly by oral application of ibrutinib, an established therapy for chronic lymphocytic leukemia (CLL) with long-term safety. We found that ibrutinib and the novel Btk inhibitors acalabrutinib and ONO/GS-4059 block GPVI-dependent static platelet aggregation in blood exposed to human plaque homogenate and collagen but not to ADP or arachidonic acid. Moreover, Btk inhibitors prevented platelet thrombus formation on human atherosclerotic plaque homogenate and plaque tissue sections from arterially flowing blood, whereas integrin α2β1 and VWF-dependent platelet adhesion to collagen, which is important for physiologic hemostasis, was not affected. This plaque-selective platelet inhibition was also observed in CLL patients taking 450 mg of ibrutinib and in volunteers after much lower and intermittent dosing of the drug. We conclude that Btk inhibitors, by targeting GPIb and GPVI signal transduction, suppress platelet thrombus accretion from flowing blood on atherosclerotic plaque but spare hemostatic platelet function. Btk inhibitors hold promise as the first culprit lesion-focused oral antiplatelet drugs and are effective at low doses.
Collapse
|
9
|
Carrillo-Tapia E, García-García E, Herrera-González NE, Yamazaki-Nakashimada MA, Staines-Boone AT, Segura-Mendez NH, Scheffler-Mendoza SC, O Farrill-Romanillos P, Gonzalez-Serrano ME, Rodriguez-Alba JC, Santos-Argumedo L, Berron-Ruiz L, Sanchez-Flores A, López-Herrera G. Delayed diagnosis in X-linked agammaglobulinemia and its relationship to the occurrence of mutations in BTK non-kinase domains. Expert Rev Clin Immunol 2017; 14:83-93. [PMID: 29202590 DOI: 10.1080/1744666x.2018.1413349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND X-linked agammaglobulinemia (XLA) is characterized by the absence of immunoglobulin and B cells. Patients suffer from recurrent bacterial infections from early childhood, and require lifelong immunoglobulin replacement therapy. Mutations in BTK (Bruton's Tyrosine Kinase) are associated with this phenotype. Some patients that present XLA do not show typical clinical symptoms, resulting in delayed diagnosis due to the lack of a severe phenotype. This study presents a report of five XLA patients from four different families and attempts to determine a relationship between delayed diagnosis and the occurrence of BTK mutations. METHODS Samples from patients with antibody deficiency were analyzed to determine BTK expression, immunophenotyping and mutation analysis. Clinical and laboratory data was analyzed and presented for each patient. RESULTS Most patients presented here showed atypical clinical and laboratory data for XLA, including normal IgM, IgG, or IgA levels. Most patients expressed detectable BTK protein. Sequencing of BTK showed that these patients harbored missense mutations in the pleckstrin homology and Src-homology-2 domains. When it was compared to public databases, BTK sequencing exhibited a new change, along with three other previously reported changes. CONCLUSIONS Delayed diagnosis and atypical manifestations in XLA might be related to mutation type and BTK expression.
Collapse
Affiliation(s)
- Eduardo Carrillo-Tapia
- a Unidad de Investigación en Inmunodeficiencias , Instituto Nacional de Pediatría, SSA , Ciudad de México , Mexico.,b Posgrado en Ciencias de la Salud, Escuela Superior de Medicina , Instituto Politécnico Nacional , Ciudad de México , Mexico.,c Programa en Ciencias Genómicas , Universidad Autónoma de la Ciudad de México , Mexico
| | - Elizabeth García-García
- a Unidad de Investigación en Inmunodeficiencias , Instituto Nacional de Pediatría, SSA , Ciudad de México , Mexico
| | - Norma Estela Herrera-González
- b Posgrado en Ciencias de la Salud, Escuela Superior de Medicina , Instituto Politécnico Nacional , Ciudad de México , Mexico
| | | | - Aidee Tamara Staines-Boone
- e Departamento Inmunología Clínica , Centro Médico Nacional del Noreste, Unidad Médica de alta especialidad IMSS 25 , Monterrey , NL , Mexico
| | - Nora Hilda Segura-Mendez
- f Servicio de alergia e Inmunologia Clínica , Hospital de Especialidades, Centro Médico Nacional Siglo XXI, IMSS , Ciudad de México , Mexico
| | | | - Patricia O Farrill-Romanillos
- f Servicio de alergia e Inmunologia Clínica , Hospital de Especialidades, Centro Médico Nacional Siglo XXI, IMSS , Ciudad de México , Mexico
| | - Maria E Gonzalez-Serrano
- a Unidad de Investigación en Inmunodeficiencias , Instituto Nacional de Pediatría, SSA , Ciudad de México , Mexico
| | - Juan Carloa Rodriguez-Alba
- g Departamento de Biomedicina , Instituto de Ciencias de la Salud, Universidad Veracruzana , Xalapa Ver , Mexico
| | - Leopoldo Santos-Argumedo
- h Biomedicina Molecular , Centro de Investigación y de Estudios Avanzados , Ciudad de México , Mexico
| | - Laura Berron-Ruiz
- a Unidad de Investigación en Inmunodeficiencias , Instituto Nacional de Pediatría, SSA , Ciudad de México , Mexico
| | - Alejandro Sanchez-Flores
- i Unidad Universitaria de Secuenciación Masiva y Bioinformática. Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca Morelos , Mexico
| | - Gabriela López-Herrera
- a Unidad de Investigación en Inmunodeficiencias , Instituto Nacional de Pediatría, SSA , Ciudad de México , Mexico
| |
Collapse
|
10
|
Abstract
The development of bruton tyrosine kinase inhibitors (BTKi) has been a significant advancement in the treatment of chronic lymphocytic leukemia and related B-cell malignancies. As experience in using ibrutinib increased, the first drug to be licensed in its class, atrial fibrillation (AF) emerged as an important side effect. The intersection between BTKi therapy for B-cell malignancies and AF represents a complex area of management with scant evidence for guidance. Consideration needs to be taken regarding the interplay of increased bleeding risk versus thromboembolic complications of AF, drug interactions between ibrutinib and anticoagulants and antiarrhythmic agents, and the potential for other, as yet seldom reported cardiac side effects. This review describes the current knowledge regarding BTKi and potential pathophysiologic mechanisms of AF and discusses the management of BTKi-associated AF. Finally, a review of the second generation BTKi is provided and gaps in knowledge in this evolving field are highlighted.
Collapse
Affiliation(s)
- Chloe Pek Sang Tang
- a Department of Haematology , St Vincent's Hospital Melbourne , Fitzroy , Australia
| | - Julie McMullen
- b Baker IDI Heart and Diabetes Institute , Melbourne , Australia
| | - Constantine Tam
- a Department of Haematology , St Vincent's Hospital Melbourne , Fitzroy , Australia
| |
Collapse
|
11
|
Abstract
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia and remains incurable outside of the setting of allogeneic stem cell transplant. While the standard therapy for both initial and relapsed CLL has traditionally included monoclonal antibody therapy in combination with chemotherapy, there are patients with high-risk disease features including unmutated IgVH, del(11q22) and del(17p13) that are associated with poor overall responses to these therapies with short time to relapse and shortened overall survival. Additionally, many of these therapies have a high rate of infectious toxicity in a population already at increased risk. Targeting the B-cell receptor (BCR) signaling pathway has emerged as a promising therapeutic advance in a variety of B-cell malignancies, including CLL. Bruton agammaglobulinemia tyrosine kinase (Btk) is a tyrosine kinase in the BCR pathway critical to the survival of both normal and malignant B cells and inhibition of this kinase has shown to block the progression of CLL. Ibrutinib, a first in class oral inhibitor of Btk, has shown promise as a very effective agent in the treatment of CLL-in both relapsed and upfront therapy, alone and in combination with other therapies, and in patients of all-risk disease-which has led to its approval in relapsed CLL and as frontline therapy in patients with the high-risk del(17p13) disease. Several studies are ongoing to evaluate the efficacy and safety of ibrutinib in combination with chemotherapy as frontline treatment for CLL and investigation into newer-generation Btk inhibitors is also underway.
Collapse
Affiliation(s)
- Kami Maddocks
- The Ohio State University Comprehensive Cancer Center, Arthur G James Comprehensive Cancer Center, Columbus, OH.
| | - Jeffrey A Jones
- The Ohio State University Comprehensive Cancer Center, Arthur G James Comprehensive Cancer Center, Columbus, OH
| |
Collapse
|
12
|
Qin X, Jiang LP, Tang XM, Wang M, Liu EM, Zhao XD. Clinical features and mutation analysis of X-linked agammaglobulinemia in 20 Chinese patients. World J Pediatr 2013; 9:273-7. [PMID: 23335184 DOI: 10.1007/s12519-013-0400-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/17/2012] [Indexed: 01/21/2023]
Abstract
BACKGROUND X-linked agammagobulinemia (XLA) is a primary immunodeficiency caused by Bruton's tyrosine kinase (BTK) gene mutation. XLA patients have an extremely small amount of peripheral B cells and profound deficiency in all immunoglobulin isotypes. We analyzed the clinical, immunologic, and molecular characteristics of children with XLA in an attempt to improve the diagnosis and treatment of XLA in China. METHODS Twenty children with XLA-compatible phenotypes from 18 unrelated families were enrolled in this study. The BTK gene was amplified and sequenced, followed by mutation analysis in these children and their female relatives. RESULTS Eighteen different mutations of the BTK gene were identified in the 20 patients. Eleven mutations had been reported previously including eight missense mutations (c.994C>T, c.1987C>A, c.1885G>T, c.502T>C, c.1085C>T, c.1816C>T, c.214C>T, c.1912G>A) and three nonsense mutations (c.1267T>A, c.1793C>G, c.1618C>T). Seven novel mutations of the BTK gene were also presented and included five missense mutations (c.134T>A, c.1646T>A, c.1829C>G, c.711G>T, c.1235G>A), one splice-site mutation (c.523+1G>A) and one insertion mutation (c.1024-1025in sTTGCTAAAGCAACTGCTAAAGCAAG). Eight out of 18 mutations of the BTK gene were located in the TK domain, 4 in the PH domain, 4 in the SH2 domain and 2 in the TH domain. Genetic study for carrier status was carried out in 18 families with definite BTK gene mutations. Nine carriers with BTK gene mutations were identified. Six families without carriers were detected, and 3 patients were not tested in this study. CONCLUSION Our results support that molecular genetic testing represents an important tool for early confirmed diagnosis of congenital agammaglobulinemia and may allow accurate carrier detection and prenatal diagnosis.
Collapse
Affiliation(s)
- Xian Qin
- Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | | | | | | | | | | |
Collapse
|
13
|
Aghamohammadi A, Abolhassani H, Eibl MM, Espanol T, Kanegane H, Miyawaki T, Mohammadinejad P, Pourhamdi S, Wolf HM, Parvaneh N, Al-Herz W, Durandy A, Stiehm ER, Plebani A. Predominantly Antibody Deficiency. CLINICAL CASES IN PRIMARY IMMUNODEFICIENCY DISEASES 2012:113-192. [DOI: 10.1007/978-3-642-31785-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Zhang ZY, Zhao XD, Jiang LP, Liu EM, Wang M, Yu J, Liu P, Yang XQ. Clinical characteristics and molecular analysis of 21 Chinese children with congenital agammaglobulinemia. Scand J Immunol 2011; 72:454-9. [PMID: 21039741 DOI: 10.1111/j.1365-3083.2010.02457.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Congenital agammaglobulinemia is a humoral primary immunodeficiency and affected patients have extremely low levels of peripheral B cells and profound deficiency of all immunoglobulin isotypes. Mutations of the Bruton's tyrosine kinase (BTK) gene are responsible for most of the congenital agammaglobulinemia. In this study, the phenotypes of congenital agammaglobulinemia were investigated in 21 male children from 21 unrelated Chinese families. Sixteen different mutations of BTK gene were identified in 18 patients, and three patients did not have BTK gene mutations. Nine mutations had been reported previously including one gross deletion (c.722_2041del), one missense mutation (c.1764G>T), three non-sense mutations (c.194C>A, c.895C>T and c.1821G>A) and four invariant splice-site mutations (c.971+2T>C, c.1481+2T>A, c.1482-2A>G, c.1699-2A>G). Seven novel mutations were identified (c.373_441del, c. 504delG, c.537delC, c.851delA, c.1637G>A, c.1879T>C and c. 1482_1882 del). Ten of the eighteen mutations of BTK gene were located in the TK domain, four in the PH domain, three in the SH3 domain and one spanned the TH, SH3, SH2 and TK domain. Candidate genes of autosomal-recessive agammaglobulinemia, including IGHM, CD79a, CD79b and IGLL1, were screened in three patients without mutations in the BTK gene. A compound heterozygosity mutation in the IGHM gene (c.1956G>A, c.175_176insC) was identified in one patient. The results of our study further support that molecular genetic testing represents an important tool for early confirmed diagnosis of congenital agammaglobulinemia and may allow accurate carrier detection and prenatal diagnosis.
Collapse
Affiliation(s)
- Z-Y Zhang
- Division of Immunology, Children's Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Adult-onset presentations of genetic immunodeficiencies: genes can throw slow curves. Curr Opin Infect Dis 2010; 23:359-64. [PMID: 20581672 DOI: 10.1097/qco.0b013e32833bc1b0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE OF REVIEW The molecular and genetic mechanisms behind adult presentations of primary immunodeficiency diseases are examined, with particular emphasis on cases where this was heralded by severe, recurrent, or opportunistic infection. RECENT FINDINGS A detailed analysis over the last two decades of the relationship between genotype and clinical phenotype for a number of genetic immunodeficiencies has revealed multiple mechanisms that can account for the delayed presentation of genetic disorders that typically present in childhood, including hypomorphic gene mutations and X-linked gene mutations with age-related skewing in random X-chromosome inactivation. Adult-onset presentations of chronic granulomatous disease, X-linked agammaglobulinemia, IL-12/Th1/IFN-gamma and IL-23/Th17/IL-17 pathway defects, and X-linked lymphoproliferative disorder are used to illustrate these mechanisms. Finally, certain genetic types of common variable immunodeficiency are used to illustrate that inherited null mutations can take decades to manifest immunologically. SUMMARY Both genetic mechanisms and environmental factors can account for adult-onset infectious and noninfectious complications as manifestations of disorders that are typically present in childhood. This emphasizes the potential complexity in the relationship between genotype and phenotype with natural human mutations.
Collapse
|
16
|
Palazzi C, D'Amico E, Cacciatore P, Pennese E, Petricca A, Olivieri I. Juvenile onset psoriatic arthritis in a patient with X‐linked agammaglobulinemia (Bruton's disease). Scand J Rheumatol 2009; 32:309-11. [PMID: 14690146 DOI: 10.1080/03009740310003965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We describe a 47-year-old male patient suffering from X-linked (or Bruton's) agammaglobulinemia with severe psoriatic arthritis (PsA), which started in childhood. PsA has been previously described in T-cell defective disorders, such as HIV infection, but our observation demonstrates that this rheumatic disease can also occur in subjects with B-lymphocyte cell functional impairment. Chronic inflammatory (bacterial?) involvement of the bowel could represent a pathogenetic connection between X-linked agammaglobulinemia and PsA.
Collapse
Affiliation(s)
- C Palazzi
- Division of Rheumatology, Villa Pini Clinic, Chieti, Italy.
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
A 5-yr-old Caucasian boy with a new mutation in Bruton's tyrosine kinase (BTK) is described. Full sequencing of the BTK gene revealed a point mutation in exon 17 resulting in an amino acid change from tryptophan to serine at location 581 of the tyrosine kinase domain. Clinically the child presented with chronic gingivitis and had no prior history of bacterial infections. Whereas serum immunoglobulin M (IgM) levels were undetectable, IgG levels were in the low normal range. The gingivitis completely resolved after intravenous immunoglobulin therapy. Lymphocyte phenotyping revealed 0.05% B cells in his peripheral blood, which were IgG(-), IgM(+), IgD(+), CD38(+), CD20(+), CD27(-). However, 40% of the B cells also expressed CD5. This subpopulation of B cells has not previously been described in X-linked agammaglobulinaemia (XLA) patients. We suggest that the occurrence of CD5(+) B cells could correlate with a late onset and mild clinical presentations of XLA.
Collapse
Affiliation(s)
- Anthony J W Liu
- Department of Paediatrics, Nepean Hospital, Western Clinical School, University of Sydney, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
18
|
Weiler CR, Bankers-Fulbright JL. Common variable immunodeficiency: test indications and interpretations. Mayo Clin Proc 2005; 80:1187-200. [PMID: 16178499 DOI: 10.4065/80.9.1187] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Common variable immunodeficiency (CVID) is a primary immunodeficiency disorder that can present with multiple phenotypes, all of which are characterized by hypogammaglobulinemia, in a person at any age. A specific genetic defect that accounts for all CVID phenotypes has not been identified, and it is likely that several distinct genetic disorders with similar clinical presentations are responsible for the observed variation. In this review, we summarize the known genetic mutations that give rise to hypogammaglobulinemia and how these gene products affect normal or abnormal B-cell development and function, with particular emphasis on CVID. Additionally, we describe specific phenotypic and genetic laboratory tests that can be used to diagnose CVID and provide guidelines for test interpretation and subsequent therapeutic intervention.
Collapse
Affiliation(s)
- Catherine R Weiler
- Department of Internal Medicine and Division of Allergic Diseases, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
19
|
Thatayatikom A, White AJ. Swollen uvula in an 18-year-old man with hypogammaglobulinemia. Ann Allergy Asthma Immunol 2004; 93:417-24. [PMID: 15562879 DOI: 10.1016/s1081-1206(10)61407-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Akaluck Thatayatikom
- Division of Immunology/Rheumatology, Department of Pediatrics, Saint Louis Children's Hospital and Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|