1
|
Lu Z, Morita M, Yeager TS, Lyu Y, Wang SY, Wang Z, Fan G. Validation of Artificial Intelligence (AI)-Assisted Flow Cytometry Analysis for Immunological Disorders. Diagnostics (Basel) 2024; 14:420. [PMID: 38396459 PMCID: PMC10888253 DOI: 10.3390/diagnostics14040420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Flow cytometry is a vital diagnostic tool for hematologic and immunologic disorders, but manual analysis is prone to variation and time-consuming. Over the last decade, artificial intelligence (AI) has advanced significantly. In this study, we developed and validated an AI-assisted flow cytometry workflow using 379 clinical cases from 2021, employing a 3-tube, 10-color flow panel with 21 antibodies for primary immunodeficiency diseases and related immunological disorders. The AI software (DeepFlow™, version 2.1.1) is fully automated, reducing analysis time to under 5 min per case. It interacts with hematopatholoists for manual gating adjustments when necessary. Using proprietary multidimensional density-phenotype coupling algorithm, the AI model accurately classifies and enumerates T, B, and NK cells, along with important immune cell subsets, including CD4+ helper T cells, CD8+ cytotoxic T cells, CD3+/CD4-/CD8- double-negative T cells, and class-switched or non-switched B cells. Compared to manual analysis with hematopathologist-determined lymphocyte subset percentages as the gold standard, the AI model exhibited a strong correlation (r > 0.9) across lymphocyte subsets. This study highlights the accuracy and efficiency of AI-assisted flow cytometry in diagnosing immunological disorders in a clinical setting, providing a transformative approach within a concise timeframe.
Collapse
Affiliation(s)
- Zhengchun Lu
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; (Z.L.); (M.M.); (T.S.Y.); (Y.L.); (S.Y.W.)
| | - Mayu Morita
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; (Z.L.); (M.M.); (T.S.Y.); (Y.L.); (S.Y.W.)
| | - Tyler S. Yeager
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; (Z.L.); (M.M.); (T.S.Y.); (Y.L.); (S.Y.W.)
| | - Yunpeng Lyu
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; (Z.L.); (M.M.); (T.S.Y.); (Y.L.); (S.Y.W.)
| | - Sophia Y. Wang
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; (Z.L.); (M.M.); (T.S.Y.); (Y.L.); (S.Y.W.)
| | | | - Guang Fan
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; (Z.L.); (M.M.); (T.S.Y.); (Y.L.); (S.Y.W.)
| |
Collapse
|
2
|
Rybakowska P, Alarcón-Riquelme ME, Marañón C. Approaching Mass Cytometry Translational Studies by Experimental and Data Curation Settings. Methods Mol Biol 2024; 2779:369-394. [PMID: 38526795 DOI: 10.1007/978-1-0716-3738-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Clinical studies are conducted to better understand the pathological mechanism of diseases and to find biomarkers associated with disease activity, drug response, or outcome prediction. Mass cytometry (MC) is a high-throughput single-cell technology that measures hundreds of cells per second with more than 40 markers per cell. Thus, it is a suitable tool for immune monitoring and biomarker discovery studies. Working in translational and clinical settings requires a careful experimental design to minimize, monitor, and correct the variations introduced during sample collection, preparation, acquisition, and analysis. In this review, we will focus on these important aspects of MC-related experiments and data curation in the context of translational clinical research projects.
Collapse
Affiliation(s)
- Paulina Rybakowska
- Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Marta E Alarcón-Riquelme
- Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Concepción Marañón
- Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain.
| |
Collapse
|
3
|
Khalturina EO, Degtyareva ND, Bairashevskaia AV, Mulenkova AV, Degtyareva AV. Modern diagnostic capabilities of neonatal screening for primary immunodeficiencies in newborns. Clin Exp Pediatr 2021; 64:504-510. [PMID: 33781055 PMCID: PMC8498015 DOI: 10.3345/cep.2020.01270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 02/05/2021] [Indexed: 11/27/2022] Open
Abstract
Population screening of newborns is an extremely important and informative diagnostic approach that allows early identification of babies who are predisposed to the development of a number of serious diseases. Some of these diseases are known and have effective treatment methods. Neonatal screening enables the early diagnosis and subsequent timely initiation of therapy. This helps to prevent serious complications and reduce the percentage of disability and deaths among newborns and young children. Primary immunodeficiency diseases and primary immunodeficiency syndrome (PIDS) are a heterogeneous group of diseases and conditions based on impaired immune system function associated with developmental defects and characterized by various combinations of recurrent infections, development of autoimmune and lymphoproliferative syndromes (genetic defects in apoptosis, gene mutation Fas receptor or ligand), granulomatous process, and malignant neoplasms. Most of these diseases manifest in infancy and lead to serious illness, disability, and high mortality rates. Until recently, it was impossible to identify children with PIDS before the onset of the first clinical symptoms, which are usually accompanied by complications in the form of severe coinfections of a viral-bacterial-fungal etiology. Modern advances in medical laboratory technology have allowed the identification of children with severe PIDS, manifested by T- and/or B-cell lymphopenia and other disorders of the immune system. This review discusses the main existing strategies and directions used in PIDS screening programs for newborns, including approaches to screening based on excision of T-cell receptors and kappa-recombination excision circles, as well as the potential role and place of next-generation sequencing technology to increase the diagnostic accuracy of these diseases.
Collapse
Affiliation(s)
- Evgenia Olegovna Khalturina
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia.,National Medical Research Center for Obstetrics, Gynecology, and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation; Department of Pediatrics and Neonatology, Moscow, Russia
| | - Natalia Dmitrievna Degtyareva
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Anastasiia Vasi'evna Bairashevskaia
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Alena Valerievna Mulenkova
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Anna Vladimirovna Degtyareva
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia.,National Medical Research Center for Obstetrics, Gynecology, and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation; Department of Pediatrics and Neonatology, Moscow, Russia
| |
Collapse
|
4
|
Ohnishi T, Shinjoh M, Ohara H, Kawai T, Kamimaki I, Mizushima R, Kamada K, Itakura Y, Iguchi S, Uzawa Y, Yoshida A, Kikuchi K. Purulent lymphadenitis caused by Staphylococcus argenteus, representing the first Japanese case of Staphylococcus argenteus (multilocus sequence type 2250) infection in a 12-year-old boy. J Infect Chemother 2018; 24:925-927. [PMID: 29709375 DOI: 10.1016/j.jiac.2018.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/26/2018] [Accepted: 03/30/2018] [Indexed: 10/17/2022]
Abstract
Staphylococcus argenteus is a novel species separated from a strain of coagulase-positive, non-pigmented S. aureus. Although S. argenteus has been reported to occur globally, multilocus sequence type (ST) 2250 is mainly found in Northeastern Thailand. Because conventional biochemical testing misidentifies this pathogen as S. aureus, multilocus sequence typing (MLST) or nucA sequencing is recommended to distinguish between S. argenteus and S. auereus. The patient was a previously healthy 12-year-old boy who was admitted because of right inguinal lymphadenitis and cellulitis. Although intravenous cefazolin was administered, his lymphadenitis worsened and formed an abscess on day 6 of hospitalization. Incision and drainage were performed on day 7 of hospitalization. Cefazolin was changed to oral cefaclor, and the patient was successfully treated over a period of 5 weeks. No recurrence was observed throughout 12-months of follow-up. He had a history of right axillary lymph node abscess 2 months before this admission, which was successfully treated with incision, drainage, and antibiotic therapy. He has lived in Japan since birth and never traveled abroad. He had no opportunity to interact with foreigners. His immune function, especially neutrophil function, was tested and we did not find any dysfunction. First, methicillin-sensitive S. aureus was misidentified from the abscess culture. Subsequently, the causative agent was re-identified as S. argenteus ST2250 based on MLST. To our knowledge, this is the first case of S. argenteus ST2250 infection in Japan. This pathogen should be taken into consideration in the diagnosis if the patient has atypical non-pigmented S. aureus.
Collapse
Affiliation(s)
- Takuma Ohnishi
- Department of Pediatrics, National Hospital Organization Saitama National Hospital, 2-1 Suwa, Wako-shi, Saitama, 321-0102, Japan.
| | - Masayoshi Shinjoh
- Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Hirotoshi Ohara
- Department of Plastic Surgery, National Hospital Organization Saitama National Hospital, 2-1 Suwa, Wako-shi, Saitama, 321-0102, Japan.
| | - Toshinao Kawai
- Division of Immunology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
| | - Isamu Kamimaki
- Department of Pediatrics, National Hospital Organization Saitama National Hospital, 2-1 Suwa, Wako-shi, Saitama, 321-0102, Japan.
| | - Ryo Mizushima
- Department of Infectious Diseases, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Keisuke Kamada
- Department of Infectious Diseases, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Yasutomo Itakura
- Department of Infectious Diseases, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Shigekazu Iguchi
- Department of Infectious Diseases, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Yutaka Uzawa
- Department of Infectious Diseases, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Atsushi Yoshida
- Department of Infectious Diseases, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Ken Kikuchi
- Department of Infectious Diseases, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| |
Collapse
|
5
|
Flow cytometry-based diagnosis of primary immunodeficiency diseases. Allergol Int 2018; 67:43-54. [PMID: 28684198 DOI: 10.1016/j.alit.2017.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/09/2017] [Accepted: 05/26/2017] [Indexed: 10/19/2022] Open
Abstract
Primary immunodeficiencies (PIDs) are a heterogeneous group of inherited diseases of the immune system. The definite diagnosis of PID is ascertained by genetic analysis; however, this takes time and is costly. Flow cytometry provides a rapid and highly sensitive tool for diagnosis of PIDs. Flow cytometry can evaluate specific cell populations and subpopulations, cell surface, intracellular and intranuclear proteins, biologic effects associated with specific immune defects, and certain functional immune characteristics, each being useful for the diagnosis and evaluation of PIDs. Flow cytometry effectively identifies major forms of PIDs, including severe combined immunodeficiency, X-linked agammaglobulinemia, hyper IgM syndromes, Wiskott-Aldrich syndrome, X-linked lymphoproliferative syndrome, familial hemophagocytic lymphohistiocytosis, autoimmune lymphoproliferative syndrome, IPEX syndrome, CTLA 4 haploinsufficiency and LRBA deficiency, IRAK4 and MyD88 deficiencies, Mendelian susceptibility to mycobacterial disease, chronic mucocuneous candidiasis, and chronic granulomatous disease. While genetic analysis is the definitive approach to establish specific diagnoses of PIDs, flow cytometry provides a tool to effectively evaluate patients with PIDs at relatively low cost.
Collapse
|
6
|
Application of Flow Cytometry in the Evaluation of Primary Immunodeficiencies. Indian J Pediatr 2016; 83:444-9. [PMID: 26865168 PMCID: PMC5007620 DOI: 10.1007/s12098-015-2011-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022]
Abstract
Primary immunodeficiency disorders (PIDDs) are a heterogeneous group of inherited disorders of the immune system. Currently more than 250 different PIDDs with a known genetic defect have been recognized. The diagnosis of many of these disorders is supported strongly by a wide variety of flow cytometry applications. Flow cytometry offers a rapid and sensitive tool for diagnosis and classification of PIDDs. It is applicable in the initial workup and subsequent management of several primary immunodeficiency diseases. As our understanding of the pathogenesis and management of these diseases increases, the majority of these tests can be easily established in the diagnostic laboratory. Thus, the focus of this article is on the application of flow cytometry in the diagnosis and/or evaluation of PIDDs.
Collapse
|
7
|
Determination of lymphocyte subset reference ranges in peripheral blood of healthy adults by a dual-platform flow cytometry method. Immunol Lett 2015; 163:96-101. [DOI: 10.1016/j.imlet.2014.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/02/2014] [Accepted: 11/04/2014] [Indexed: 11/22/2022]
|
8
|
Locke BA, Dasu T, Verbsky JW. Laboratory diagnosis of primary immunodeficiencies. Clin Rev Allergy Immunol 2014; 46:154-68. [PMID: 24569953 DOI: 10.1007/s12016-014-8412-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Primary immune deficiency disorders represent a highly heterogeneous group of disorders with an increased propensity to infections and other immune complications. A careful history to delineate the pattern of infectious organisms and other complications is important to guide the workup of these patients, but a focused laboratory evaluation is essential to the diagnosis of an underlying primary immunodeficiency. Initial workup of suspected immune deficiencies should include complete blood counts and serologic tests of immunoglobulin levels, vaccine titers, and complement levels, but these tests are often insufficient to make a diagnosis. Recent advancements in the understanding of the immune system have led to the development of novel immunologic assays to aid in the diagnosis of these disorders. Classically utilized to enumerate lymphocyte subsets, flow cytometric-based assays are increasingly utilized to test immune cell function (e.g., neutrophil oxidative burst, NK cytotoxicity), intracellular cytokine production (e.g., TH17 production), cellular signaling pathways (e.g., phosphor-STAT analysis), and protein expression (e.g., BTK, Foxp3). Genetic testing has similarly expanded greatly as more primary immune deficiencies are defined, and the use of mass sequencing technologies is leading to the identification of novel disorders. In order to utilize these complex assays in clinical care, one must have a firm understanding of the immunologic assay, how the results are interpreted, pitfalls in the assays, and how the test affects treatment decisions. This article will provide a systematic approach of the evaluation of a suspected primary immunodeficiency, as well as provide a comprehensive list of testing options and their results in the context of various disease processes.
Collapse
Affiliation(s)
- Bradley A Locke
- Department of Pediatrics, Division of Allergy and Clinical Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | | |
Collapse
|
9
|
Picard C, Fischer A. Contribution of high-throughput DNA sequencing to the study of primary immunodeficiencies. Eur J Immunol 2014; 44:2854-61. [PMID: 25154746 DOI: 10.1002/eji.201444669] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/24/2014] [Accepted: 08/18/2014] [Indexed: 01/20/2023]
Abstract
Primary immunodeficiencies (PIDs) are inborn errors of the immune system. PIDs have been characterized immunologically for the last 60 years and genetically, principally by Sanger DNA sequencing, over the last 30 years. The advent of next-generation sequencing (NGS) in 2011, with the development of whole-exome sequencing in particular, has facilitated the identification of previously unknown genetic lesions. NGS is rapidly generating a stream of candidate variants for an increasing number of genetically undefined PIDs. The use of NGS technology is ushering in a new era, by facilitating the discovery and characterization of new PIDs in patients with infections and other phenotypes, thereby helping to improve diagnostic accuracy. This review provides a historical overview of the identification of PIDs before NGS, and the advances and limitations of the use of NGS for the diagnosis and characterization of PIDs.
Collapse
Affiliation(s)
- Capucine Picard
- Study Center for Primary Immunodeficiencies, Necker-Enfant Malades Hospital, Assistance Publique, Hôpitaux de Paris (AP-HP), Paris, France; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France; Imagine Institute, Sorbonne Paris Cité, Paris Descartes University, Paris, France
| | | |
Collapse
|
10
|
Abstract
Primary immunodeficiency disorder (PID) refers to a heterogeneous group of over 130 disorders that result from defects in immune system development and/or function. PIDs are broadly classified as disorders of adaptive immunity (i.e., T-cell, B-cell or combined immunodeficiencies) or of innate immunity (e.g., phagocyte and complement disorders). Although the clinical manifestations of PIDs are highly variable, most disorders involve at least an increased susceptibility to infection. Early diagnosis and treatment are imperative for preventing significant disease-associated morbidity and, therefore, consultation with a clinical immunologist is essential. PIDs should be suspected in patients with: recurrent sinus or ear infections or pneumonias within a 1 year period; failure to thrive; poor response to prolonged use of antibiotics; persistent thrush or skin abscesses; or a family history of PID. Patients with multiple autoimmune diseases should also be evaluated. Diagnostic testing often involves lymphocyte proliferation assays, flow cytometry, measurement of serum immunoglobulin (Ig) levels, assessment of serum specific antibody titers in response to vaccine antigens, neutrophil function assays, stimulation assays for cytokine responses, and complement studies. The treatment of PIDs is complex and generally requires both supportive and definitive strategies. Ig replacement therapy is the mainstay of therapy for B-cell disorders, and is also an important supportive treatment for many patients with combined immunodeficiency disorders. The heterogeneous group of disorders involving the T-cell arm of the adaptive system, such as severe combined immunodeficiency (SCID), require immune reconstitution as soon as possible. The treatment of innate immunodeficiency disorders varies depending on the type of defect, but may involve antifungal and antibiotic prophylaxis, cytokine replacement, vaccinations and bone marrow transplantation. This article provides a detailed overview of the major categories of PIDs and strategies for the appropriate diagnosis and management of these rare disorders.
Collapse
|