1
|
Gallizzi AA, Heinken A, Guéant-Rodriguez RM, Guéant JL, Safar R. A systematic review and meta-analysis of proteomic and metabolomic alterations in anaphylaxis reactions. Front Immunol 2024; 15:1328212. [PMID: 38384462 PMCID: PMC10879545 DOI: 10.3389/fimmu.2024.1328212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
Background Anaphylaxis manifests as a severe immediate-type hypersensitivity reaction initiated through the immunological activation of target B-cells by allergens, leading to the release of mediators. However, the well-known underlying pathological mechanisms do not fully explain the whole variety of clinical and immunological presentations. We performed a systemic review of proteomic and metabolomic studies and analyzed the extracted data to improve our understanding and identify potential new biomarkers of anaphylaxis. Methods Proteomic and metabolomic studies in both human subjects and experimental models were extracted and selected through a systematic search conducted on databases such as PubMed, Scopus, and Web of Science, up to May 2023. Results Of 137 retrieved publications, we considered 12 for further analysis, including seven on proteome analysis and five on metabolome analysis. A meta-analysis of the four human studies identified 118 proteins with varying expression levels in at least two studies. Beside established pathways of mast cells and basophil activation, functional analysis of proteomic data revealed a significant enrichment of biological processes related to neutrophil activation and platelet degranulation and metabolic pathways of arachidonic acid and icosatetraenoic acid. The pathway analysis highlighted also the involvement of neutrophil degranulation, and platelet activation. Metabolome analysis across different models showed 13 common metabolites, including arachidonic acid, tryptophan and lysoPC(18:0) lysophosphatidylcholines. Conclusion Our review highlights the underestimated role of neutrophils and platelets in the pathological mechanisms of anaphylactic reactions. These findings, derived from a limited number of publications, necessitate confirmation through human studies with larger sample sizes and could contribute to the development of new biomarkers for anaphylaxis. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42024506246.
Collapse
Affiliation(s)
- Adrienne Astrid Gallizzi
- INSERM, UMR_S1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Almut Heinken
- INSERM, UMR_S1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Rosa-Maria Guéant-Rodriguez
- INSERM, UMR_S1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
- Department of Molecular Medicine and Personalized Therapeutics, Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Jean-Louis Guéant
- INSERM, UMR_S1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
- Department of Molecular Medicine and Personalized Therapeutics, Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Ramia Safar
- INSERM, UMR_S1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
2
|
Gonzalez-Torres L, García-Paz V, Vila L. Interpreting serum tryptase levels in cases of anaphylaxis and concomitant bacterial infection. Ann Allergy Asthma Immunol 2023; 131:272-273. [PMID: 37116653 DOI: 10.1016/j.anai.2023.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Affiliation(s)
| | - Vanesa García-Paz
- Pediatric Allergy Unit, Children's Hospital A Coruña, A Coruña, Spain
| | - Leticia Vila
- Pediatric Allergy Unit, Children's Hospital A Coruña, A Coruña, Spain.
| |
Collapse
|
3
|
Lower levels of CXCL-8 and IL-2 on admission as predictors of early adverse reactions to Bothrops antivenom in the Brazilian Amazon. Cytokine 2022; 152:155825. [DOI: 10.1016/j.cyto.2022.155825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/25/2022] [Accepted: 02/06/2022] [Indexed: 12/13/2022]
|
4
|
McGrath FM, Francis A, Fatovich DM, Macdonald SPJ, Arendts G, Bosco A, Woo A, Bosio E. Small nucleolar RNA networks are up-regulated during human anaphylaxis. Clin Exp Allergy 2021; 51:1310-1321. [PMID: 34228845 DOI: 10.1111/cea.13982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/04/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Anaphylaxis is a severe, potentially life-threatening allergic reaction driven primarily by the activation of mast cells. We still fail to understand factors underlying reaction severity. Furthermore, there is currently no reliable diagnostic test to confirm anaphylaxis in the emergency department (ED). OBJECTIVE This study sought to explore gene expression changes associated with anaphylaxis severity in peripheral blood leucocytes and evaluate biomarker potential. METHODS Microarray analysis (total RNA) was performed using peripheral blood samples from ED patients with moderate (n = 6) or severe (n = 12) anaphylaxis and sepsis (n = 20) at presentation (T0) and one hour later (T1). Results were compared between groups and healthy controls (n = 10 and n = 11 matched to anaphylaxis and sepsis patients, respectively). Changes in gene expression were determined using R programming language, and pathway analysis applied to explore biological processes and pathways associated with genes. Differentially expressed genes were validated in an independent cohort of anaphylaxis (n = 30) and sepsis (n = 20) patients, and healthy controls (n = 10), using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). RESULTS Significant up-regulation of small nucleolar RNAs (snoRNAs) was demonstrated in anaphylaxis compared to sepsis patients in the microarray cohort, at T0 and T1. qRT-PCR analysis of the validation cohort showed five genes: SNORD61, SNORD8, SNORD69, SNORD119 and HIST1H1D to be significantly up-regulated (adjusted p < 0.05) in severe anaphylaxis compared to sepsis. Seven genes (SNORD61, SNORD8, SCARNA21, SNORD69, SNORD110, SNORD119 and SNORD59A) were significantly up-regulated (adjusted p < 0.05) in severe anaphylaxis compared to healthy controls. CONCLUSION This study demonstrates for the first time the unique involvement of snoRNAs in the pathogenesis of anaphylaxis and suggests they are not a general feature of systemic inflammation. Further investigation of snoRNA expression in anaphylaxis could provide insights into disease pathogenesis. CLINICAL RELEVANCE SnoRNAs are up-regulated during acute anaphylaxis in humans and could potentially be used as biomarkers of severe anaphylaxis.
Collapse
Affiliation(s)
- Francesca Marina McGrath
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Abbie Francis
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, WA, Australia.,Centre for Child Health Research, The University of Western Australia, Telethon Kids Institute, Nedlands, WA, Australia
| | - Daniel M Fatovich
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, WA, Australia.,Division of Emergency Medicine, Medical School, University of Western Australia, Perth, WA, Australia.,Emergency Department, Royal Perth Hospital, Perth, WA, Australia
| | - Stephen P J Macdonald
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, WA, Australia.,Division of Emergency Medicine, Medical School, University of Western Australia, Perth, WA, Australia.,Emergency Department, Royal Perth Hospital, Perth, WA, Australia
| | - Glenn Arendts
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, WA, Australia.,Division of Emergency Medicine, Medical School, University of Western Australia, Perth, WA, Australia.,Emergency Department, Fiona Stanley Hospital, Perth, WA, Australia
| | - Anthony Bosco
- Centre for Child Health Research, The University of Western Australia, Telethon Kids Institute, Nedlands, WA, Australia
| | - Andrew Woo
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, Perth, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Erika Bosio
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, WA, Australia.,Division of Emergency Medicine, Medical School, University of Western Australia, Perth, WA, Australia.,Emergency Department, Royal Perth Hospital, Perth, WA, Australia
| |
Collapse
|
5
|
Voss M, Kotrba J, Gaffal E, Katsoulis-Dimitriou K, Dudeck A. Mast Cells in the Skin: Defenders of Integrity or Offenders in Inflammation? Int J Mol Sci 2021; 22:ijms22094589. [PMID: 33925601 PMCID: PMC8123885 DOI: 10.3390/ijms22094589] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/13/2022] Open
Abstract
Mast cells (MCs) are best-known as key effector cells of immediate-type allergic reactions that may even culminate in life-threatening anaphylactic shock syndromes. However, strategically positioned at the host–environment interfaces and equipped with a plethora of receptors, MCs also play an important role in the first-line defense against pathogens. Their main characteristic, the huge amount of preformed proinflammatory mediators embedded in secretory granules, allows for a rapid response and initiation of further immune effector cell recruitment. The same mechanism, however, may account for detrimental overshooting responses. MCs are not only detrimental in MC-driven diseases but also responsible for disease exacerbation in other inflammatory disorders. Focusing on the skin as the largest immune organ, we herein review both beneficial and detrimental functions of skin MCs, from skin barrier integrity via host defense mechanisms to MC-driven inflammatory skin disorders. Moreover, we emphasize the importance of IgE-independent pathways of MC activation and their role in sustained chronic skin inflammation and disease exacerbation.
Collapse
Affiliation(s)
- Martin Voss
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Johanna Kotrba
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Evelyn Gaffal
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, 39120 Magdeburg, Germany;
| | - Konstantinos Katsoulis-Dimitriou
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Anne Dudeck
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
- Health Campus Immunology, Infectiology and Inflammation, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
6
|
Kempiński K, Romantowski J, Maciejewska A, Pawłowski R, Chełmińska M, Jassem E, Niedoszytko M. COMMD8 changes expression during initial phase of wasp venom immunotherapy. J Gene Med 2020; 22:e3243. [PMID: 32559011 DOI: 10.1002/jgm.3243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/02/2020] [Accepted: 06/10/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Hymenoptera venom allergy (HVA) is of great concern because of the possibility of anaphylaxis, which may be fatal. Venom immunotherapy (VIT) is the only disease-modifying treatment in HVA and, although efficient, its mechanism remains partially unknown. Gene expression analysis may be helpful for establishing a proper model of tolerance induction during the build-up phase of VIT. The present study aimed to analyze how the start of VIT changes the expression of 15 selected genes. METHODS Forty-five patients starting VIT with a wasp venom allergy were enrolled. The diagnosis was established based on anaphylaxis history (third or fourth grade on the Mueller scale) and positive soluble immunoglobulin E and/or skin tests. Two blood collections were performed in the patient group: before and after 3 months of VIT. One sample was taken in the control group. Gene expression analysis was performed using a reverse transcriptase-polymerase chain reaction with microfluidic cards and normalized to the 18S housekeeping gene. RESULTS Commd8 was the only gene that changed expression significantly after the start of VIT (p = 0.012). Its expression decreased towards the levels observed in the healthy controls. Twelve out of 15 genes (commd8, cldn1, cngb3, fads1, hes6, hla-drb5, htr3b, prlr, slc16a4, snx33, socs3 and twist2) revealed a significantly different expression compared to the healthy controls. CONCLUSIONS The present study shows that commd8 changes significantly its expression during initial phase of VIT. This gene might be a candidate for VIT biomarker in future studies.
Collapse
Affiliation(s)
- Karol Kempiński
- Department of Allergology, Medical University of Gdańsk, Gdańsk, Poland
| | - Jan Romantowski
- Department of Allergology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Ryszard Pawłowski
- Department of Forensic Medicine, Medical University of Gdansk, Gdańsk, Poland
| | - Marta Chełmińska
- Department of Allergology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ewa Jassem
- Department of Allergology, Medical University of Gdańsk, Gdańsk, Poland
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
7
|
Varney VA, Nicholas A, Warner A, Sumar N. IgE-Mediated Systemic Anaphylaxis And Its Association With Gene Polymorphisms Of ACE, Angiotensinogen And Chymase. J Asthma Allergy 2019; 12:343-361. [PMID: 31632094 PMCID: PMC6790349 DOI: 10.2147/jaa.s213016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 09/05/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The renin-angiotensin system (RAS) protects the circulation against sudden falls in systemic blood pressure via generation of angiotensin II (AII). Previously, we demonstrated that patients with anaphylaxis involving airway angioedema and cardiovascular collapse (AACVS) had significantly increased "I" gene polymorphisms of the angiotensin-converting-enzymes (ACE). This is associated with lower serum ACE and AII levels and was not seen in anaphylaxis without collapse nor atopics and healthy controls. OBJECTIVES To examine the angiotensinogen (AGT-M235T) and chymase gene (CMA-1 A1903G) polymorphisms in these original subjects. METHOD 122 patients with IgE-mediated anaphylaxis, 119 healthy controls and 52 atopics had polymorphisms of the AGT gene and chymase gene examined by polymerase chain reactions and gel electrophoresis. Their previous ACE genotypes were included for the analysis. RESULTS AGT-MM genes (associated with low AGT levels) were significantly increased in anaphylaxis (Terr's classification). When combined with ACE, anaphylaxis showed increased MM/II gene pairing (p<0.0013) consistent with lower RAS activity. For chymase, there was increased pairing of MM/AG (p<0.005) and AG/II and AG/ID (p<0.0073) for anaphylaxis consistent with lower RAS activity. A tri-allelic ensemble of the 6 commonest gene combinations for the healthy controls and anaphylaxis confirmed this difference (p=0.0001); for anaphylaxis, genes were predominately MM/AG/II or ID, while healthy controls were DD/MT/AG or GG patterns. CONCLUSION Our gene polymorphisms show lower RAS activity for anaphylaxis especially AACVS. Animal models of anaphylaxis are focused on endothelial nitric oxide (eNO) which is shown to be the mediator of fatal shock and prevented by eNO-blockade. The interaction of AII and eNO controls the microcirculation in man. High serum AII levels reduce eNO activity, so higher RAS-activity could protect against shock. Our data shows low RAS activity in anaphylaxis especially AACVS, suggesting the influence of these genes on shock are via AII levels and its effects on eNO.
Collapse
Affiliation(s)
- VA Varney
- Department of Medicine, St Helier Hospital, Carshalton, SurreySM5 1AA, UK
- Department of Allergy and Immunology, St Helier Hospital, Carshalton, SurreySM5 1AA, UK
| | - A Nicholas
- Department of Allergy and Immunology, St Helier Hospital, Carshalton, SurreySM5 1AA, UK
| | - A Warner
- Department of Allergy and Immunology, St Helier Hospital, Carshalton, SurreySM5 1AA, UK
| | - N Sumar
- Department of Allergy and Immunology, St Helier Hospital, Carshalton, SurreySM5 1AA, UK
| |
Collapse
|
8
|
Kow ASF, Chik A, Soo KM, Khoo LW, Abas F, Tham CL. Identification of Soluble Mediators in IgG-Mediated Anaphylaxis via Fcγ Receptor: A Meta-Analysis. Front Immunol 2019; 10:190. [PMID: 30809224 PMCID: PMC6379333 DOI: 10.3389/fimmu.2019.00190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/22/2019] [Indexed: 01/14/2023] Open
Abstract
Background: Anaphylaxis is an acute and life-threatening allergic response. Classically and most commonly, it can be mediated by the crosslinking of allergens to immunoglobulin E (IgE)- high affinity IgE receptor (FcεRI) complex found mostly on mast cells. However, there is another pathway of anaphylaxis that is less well-studied. This pathway known as the alternative pathway is mediated by IgG and its Fc gamma receptor (Fcγ). Though it was not documented in human anaphylaxis, a few studies have found that IgG-mediated anaphylaxis can happen as demonstrated in rodent models of anaphylaxis. In these studies, a variety of soluble mediators were being evaluated and they differ from each study which causes confusion in the suitability, and reliability of choice of soluble mediators to be analyzed for diagnosis or therapeutic purposes. Hence, the objective of this meta-analysis is to identify the potential soluble mediators that are involved in an IgG-mediated anaphylaxis reaction. Methods: Studies related to IgG-mediated anaphylaxis were sourced from five search engines namely PubMed, Scopus, Ovid, Cochrane Library, and Center for Agricultural Bioscience International (CABI) regardless of publication year. Relevant studies were then reviewed based on specific inclusion factors. The means and standard deviations of each soluble mediator studied were then extracted using ImageJ or Get Data Graph Digitiser software and the data were subjected to meta-analysis. Results: From our findings, we found that histamine, serotonin, platelet activating factor (PAF), β-hexosaminidase, leukotriene C4 (LTC4), mucosal mast cell protease-1 (MMCP-1), interleukins (IL)-4,−6, and−13; tumor necrosis factor alpha (TNF-α), and macrophage inflammatory protein-1α (MIP-1α) were often being analyzed. Out of these soluble mediators, histamine, PAF, β-hexosaminidase, IL-6, and−13, MIP-1α and TNF-α were more significant with positive effect size and p < 0.001. As study effect was relatively small, we performed publication bias and found that there was publication bias and this could be due to the small sample size studied. Conclusion: As such, we proposed that through meta-analysis, the potential soluble mediators involved in rodent IgG-mediated anaphylaxis to be histamine, PAF, β-hexosaminidase, IL-6 and−13 and MIP-1α, and TNF-α but will require further studies with larger sample size.
Collapse
Affiliation(s)
- Audrey Siew Foong Kow
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Azirah Chik
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kuan-Meng Soo
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Leng Wei Khoo
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia.,Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
9
|
Valchanov K, Falter F, George S, Burt C, Roscoe A, Ng C, Besser M, Nasser S. Three Cases of Anaphylaxis to Protamine: Management of Anticoagulation Reversal. J Cardiothorac Vasc Anesth 2019; 33:482-486. [DOI: 10.1053/j.jvca.2018.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 01/12/2023]
|
10
|
Rodriguez MJ, Palomares F, Bogas G, Torres MJ, Diaz-Perales A, Rojo J, Plaza-Seron MDC, Rodriguez-Nogales A, Orengo C, Mayorga C, Perkins JR. Transcriptional Profiling of Dendritic Cells in a Mouse Model of Food-Antigen-Induced Anaphylaxis Reveals the Upregulation of Multiple Immune-Related Pathways. Mol Nutr Food Res 2018; 63:e1800759. [PMID: 30458065 DOI: 10.1002/mnfr.201800759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/05/2018] [Indexed: 12/18/2022]
Abstract
SCOPE Much of the knowledge about gene expression during anaphylaxis comes from candidate gene studies. Despite their potential role, expression changes in dendritic cells (DCs) have not been studied in this context using high throughput methods. The molecular mechanisms underlying food-antigen-induced anaphylaxis are investigated using DCs from an animal model. METHODS AND RESULTS RNA sequencing is used to study gene expression in lymph-node-derived DCs from anaphylactic mice sensitized intranasally with the major peach allergen Pru p 3 during the acute reaction phase, induced intraperitoneally. In total, 237 genes changed significantly, 181 showing at least twofold changes. Almost three-quarters of these increase during anaphylaxis. A subset is confirmed using RT-PCR in a second set of samples obtained from a new batch of mice. Enrichment analysis shows an overrepresentation of genes involved in key immune system and inflammatory processes, including TGF-β signaling. Comparison with a study using anaphylactic human subjects show significant overlap. CONCLUSIONS The findings provide a comprehensive overview of the transcriptional changes occurring in DCs during anaphylaxis and help elucidate the mechanisms involved. They add further weight to the putative role of these cells in anaphylaxis and highlight genes that may represent potential therapeutic targets.
Collapse
Affiliation(s)
- Maria Jose Rodriguez
- Research Laboratory, IBIMA-Regional University Hospital of Malaga, UMA, 29009, Malaga, Spain
| | - Francisca Palomares
- Research Laboratory, IBIMA-Regional University Hospital of Malaga, UMA, 29009, Malaga, Spain
| | - Gador Bogas
- Allergy Unit, IBIMA-Regional University Hospital of Malaga, UMA, 29009, Malaga, Spain
| | - Maria Jose Torres
- Allergy Unit, IBIMA-Regional University Hospital of Malaga, UMA, 29009, Malaga, Spain
| | - Araceli Diaz-Perales
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM), 28223, Pozuelo de Alarcon, Spain
| | - Javier Rojo
- Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, 41092, Sevilla, Spain
| | | | - Alba Rodriguez-Nogales
- Research Laboratory, IBIMA-Regional University Hospital of Malaga, UMA, 29009, Malaga, Spain
| | - Christine Orengo
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Cristobalina Mayorga
- Research Laboratory, IBIMA-Regional University Hospital of Malaga, UMA, 29009, Malaga, Spain.,Allergy Unit, IBIMA-Regional University Hospital of Malaga, UMA, 29009, Malaga, Spain
| | - James Richard Perkins
- Research Laboratory, IBIMA-Regional University Hospital of Malaga, UMA, 29009, Malaga, Spain
| |
Collapse
|
11
|
Guilarte M, Sala-Cunill A, Luengo O, Labrador-Horrillo M, Cardona V. The Mast Cell, Contact, and Coagulation System Connection in Anaphylaxis. Front Immunol 2017; 8:846. [PMID: 28798744 PMCID: PMC5526842 DOI: 10.3389/fimmu.2017.00846] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/05/2017] [Indexed: 11/13/2022] Open
Abstract
Anaphylaxis is the most severe form of allergic reaction, resulting from the effect of mediators and chemotactic substances released by activated cells. Mast cells and basophils are considered key players in IgE-mediated human anaphylaxis. Beyond IgE-mediated activation of mast cells/basophils, further mechanisms are involved in the occurrence of anaphylaxis. New insights into the potential relevance of pathways other than mast cell and basophil degranulation have been unraveled, such as the activation of the contact and the coagulation systems. Mast cell heparin released upon activation provides negatively charged surfaces for factor XII (FXII) binding and auto-activation. Activated FXII, the initiating serine protease in both the contact and the intrinsic coagulation system, activates factor XI and prekallikrein, respectively. FXII-mediated bradykinin (BK) formation has been proven in the human plasma of anaphylactic patients as well as in experimental models of anaphylaxis. Moreover, the severity of anaphylaxis is correlated with the increase in plasma heparin, BK formation and the intensity of contact system activation. FXII also activates plasminogen in the fibrinolysis system. Mast cell tryptase has been shown to participate in fibrinolysis through plasmin activation and by facilitating the degradation of fibrinogen. Some usual clinical manifestations in anaphylaxis, such as angioedema or hypotension, or other less common, such as metrorrhagia, may be explained by the direct effect of the activation of the coagulation and contact system driven by mast cell mediators.
Collapse
Affiliation(s)
- Mar Guilarte
- Allergy Section, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,VHIR Institut de Recerca Vall d'Hebron, Barcelona, Spain
| | - Anna Sala-Cunill
- Allergy Section, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,VHIR Institut de Recerca Vall d'Hebron, Barcelona, Spain
| | - Olga Luengo
- Allergy Section, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,VHIR Institut de Recerca Vall d'Hebron, Barcelona, Spain
| | - Moisés Labrador-Horrillo
- Allergy Section, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,VHIR Institut de Recerca Vall d'Hebron, Barcelona, Spain
| | - Victoria Cardona
- Allergy Section, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,VHIR Institut de Recerca Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
12
|
Handa T, Hirai T, Izumi N, Eto SI, Tsunoda SI, Nagano K, Higashisaka K, Yoshioka Y, Tsutsumi Y. Identifying a size-specific hazard of silica nanoparticles after intravenous administration and its relationship to the other hazards that have negative correlations with the particle size in mice. NANOTECHNOLOGY 2017; 28:135101. [PMID: 28240988 DOI: 10.1088/1361-6528/aa5d7c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Many of the beneficial and toxic biological effects of nanoparticles have been shown to have a negative correlation with particle size. However, few studies have demonstrated biological effects that only occur at specific nanoparticle sizes. Further elucidation of the size-specific biological effects of nanoparticles may reveal not only unknown toxicities, but also novel benefits of nanoparticles. We used surface-unmodified silica particles with a wide range of diameters and narrow size intervals between the diameters (10, 30, 50, 70, 100, 300, and 1000 nm) to investigate the relationship between particle size and acute toxicity after intravenous administration in mice. Negative correlations between particle size and thrombocytopenia, liver damage, and lethal toxicity were observed. However, a specific size-effect was observed for the severity of hypothermia, where silica nanoparticles with a diameter of 50 nm induced the most severe hypothermia. Further investigation revealed that this hypothermia was mediated not by histamine, but by platelet-activating factor, and it was independent of the thrombocytopenia and the liver damage. In addition, macrophages/Kupffer cells and platelets, but not neutrophils, play a critical role in the hypothermia. The present results reveal that silica nanoparticles have particle size-specific toxicity in mice, suggesting that other types of nanoparticles may also have biological effects that only manifest at specific particle sizes. Further study of the size-specific effects of nanoparticles is essential for safer and more effective nanomedicines.
Collapse
Affiliation(s)
- Takayuki Handa
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Salouage I, El Aidli S, Kastalli S, Daghfous R, Lakhal M. Fatal Kounis syndrome with stent thrombosis secondary to amoxicillin/clavulanic acid use: A case report and literature review. Therapie 2016; 71:535-539. [PMID: 27692979 DOI: 10.1016/j.therap.2016.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/24/2016] [Indexed: 12/23/2022]
Abstract
Anaphylactic reactions are often induced by drugs, and the most frequent ones are penicillin derivates. The concurrence of acute coronary syndrome with hypersensitivity and anaphylactic or anaphylactoid reactions constitutes the Kounis syndrome. We report a case of a coronary stent thrombosis with a fatal outcome complicating an anaphylactic shock induced by amoxicillin-clavulanic acid association. A 58-year-old woman with a history of triple coronary stenting was treated by amoxicillin/clavulanic acid association for pharyngitis. One hour after the first drug intake, she developed an anaphylactic shock with acute constricting chest pain. She received intravenous hydrocortisone and was transferred to emergency department. The patient received epinephrine intravenously with fluid perfusion and oxygen. Electrocardiogram showed Pardee waves in the anterior precordial leads. Cardiac enzyme levels (troponin I) were disturbed. The patient was transferred to the coronary care unit with a diagnosis of acute myocardial infarction. The coronary angiography revealed anterior interventricular stent thrombosis. The patient experienced a cardiogenic shock with an important hemodynamic repercussion, and she died few hours later despite emergency care. The responsibility of amoxicillin-clavulanic acid association was retained in the genesis of this anaphylactic shock in front of a suggestive delay, a compatible evolution and a high semiotic score. Amoxicillin/clavulanic acid use may cause Kounis syndrome. The use of epinephrine is a challenging decision. We suggest that Kounis syndrome should be considered in the differential diagnosis of acute coronary syndrome.
Collapse
Affiliation(s)
- Issam Salouage
- Centre national de pharmacovigilance, 9, rue Dr Zouhaier-Essafi, 1006 Tunis, Tunisia.
| | - Sihem El Aidli
- Centre national de pharmacovigilance, 9, rue Dr Zouhaier-Essafi, 1006 Tunis, Tunisia
| | - Sarra Kastalli
- Centre national de pharmacovigilance, 9, rue Dr Zouhaier-Essafi, 1006 Tunis, Tunisia
| | - Riadh Daghfous
- Centre national de pharmacovigilance, 9, rue Dr Zouhaier-Essafi, 1006 Tunis, Tunisia
| | - Mohamed Lakhal
- Centre national de pharmacovigilance, 9, rue Dr Zouhaier-Essafi, 1006 Tunis, Tunisia
| |
Collapse
|
14
|
Bilò MB, Cichocka-Jarosz E, Pumphrey R, Oude-Elberink JN, Lange J, Jakob T, Bonadonna P, Fernandez J, Kosnik M, Helbling A, Mosbech H, Gawlik R, Niedoszytko M, Patella V, Pravettoni V, Rodrigues-Alves R, Sturm GJ, Rueff F. Self-medication of anaphylactic reactions due to Hymenoptera stings-an EAACI Task Force Consensus Statement. Allergy 2016; 71:931-43. [PMID: 27060567 DOI: 10.1111/all.12908] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2016] [Indexed: 11/29/2022]
Abstract
An anaphylactic reaction due to a Hymenoptera sting is a clinical emergency, and patients, their caregivers as well as all healthcare professionals should be familiar with its recognition and acute management. This consensus report has been prepared by a European expert panel of the EAACI Interest Group of Insect Venom Hypersensitivity. It is targeted at allergists, clinical immunologists, internal medicine specialists, pediatricians, general practitioners, emergency department doctors, and any other healthcare professional involved. The aim was to report the scientific evidence on self-medication of anaphylactic reactions due to Hymenoptera stings, to inform healthcare staff about appropriate patient self-management of sting reactions, to propose indications for the prescription of an adrenaline auto-injector (AAI), and to discuss other forms of medication. First-line treatment for Hymenoptera sting anaphylaxis is intramuscular adrenaline. Prescription of AAIs is mandatory in the case of venom-allergic patients who suffer from mast cell diseases or with an elevated baseline serum tryptase level and in untreated patients with a history of a systemic reaction involving at least two different organ systems. AAI prescription should also be considered in other specific situations before, during, and after stopping venom immunotherapy.
Collapse
Affiliation(s)
- M. B. Bilò
- Allergy Unit; Department of Internal Medicine; University Hospital; Ancona Italy
| | - E. Cichocka-Jarosz
- Department of Pediatrics; Jagiellonian University Medical College; Krakow Poland
| | - R. Pumphrey
- Immunology; Central Manchester University Hospitals; Manchester UK
| | - J. N. Oude-Elberink
- Department of Allergology; GRIAC Research Institute; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
| | - J. Lange
- Department of Pediatric Pulmonology and Allergy; Medical University of Warsaw; Warsaw Poland
| | - T. Jakob
- Department of Dermatology and Allergology; Justus Liebig University Gießen; University Medical Center Gießen and Marburg GmbH; Gießen Germany
| | - P. Bonadonna
- Allergy Unit; Azienda Ospedaliera Universitaria Integrata of Verona; Verona Italy
| | - J. Fernandez
- Allergy Service; Department of Clinical Medicine; Alicante University Hospital; UMH; Alicante Spain
| | - M. Kosnik
- University Clinic of Respiratory and Allergic Disease; Golnik Slovenia
| | - A. Helbling
- Division of Allergology; University Clinic of Rheumatology, Immunology and Allergology; University Hospital/Inselspital; Bern Switzerland
| | - H. Mosbech
- Allergy Unit; Department of Dermatology and Allergy; Copenhagen University Hospital Gentofte; Hellerup Denmark
| | - R. Gawlik
- Department of Internal Medicine, Allergy and Clinical Immunology; Silesian University of Medicine; Katowice Poland
| | - M. Niedoszytko
- Department of Allergology; Medical University of Gdansk; Gdansk Poland
| | - V. Patella
- Division and School of Allergy and Clinical Immunology; ASL Salerno and University of Naples Federico II, Naples; Battipaglia Hospital; Salerno Italy
| | - V. Pravettoni
- Clinical Allergy and Immunology Unit; Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico; Milan Italy
| | - R. Rodrigues-Alves
- Allergy and Clinical Immunology Division; Divino Espirito Santo Hospital; Ponta Delgada Portugal
| | - G. J. Sturm
- Ambulatory for Allergy and Clinical Immunology; Vienna Austria
- Department of Dermatology; Medical University of Graz; Graz Austria
| | - F. Rueff
- Department of Dermatology and Allergology; Ludwig-Maximilian University; Munich Germany
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The purpose of this study is to describe the current knowledge regarding mediators involved in anaphylactic reactions, with a special focus on key effector cells and mechanisms. RECENT FINDINGS New insight into the potential relevance of pathways other than mast cell degranulation has been unravelled, such as the role of cytokines, platelet activation factor, lipid mediators and their metabolism or the activation of the contact system. SUMMARY Gaining knowledge into these pathophysiologic mechanisms will allow researchers to pursue the identification of risk factors and new preventive and therapeutic strategies in anaphylaxis.
Collapse
|
16
|
Sledd J, Wu D, Ahrens R, Lee J, Waggoner L, Tsai YT, Wang YH, Hogan SP. Loss of IL-4Rα-mediated PI3K signaling accelerates the progression of IgE/mast cell-mediated reactions. IMMUNITY INFLAMMATION AND DISEASE 2015; 3:420-30. [PMID: 26734464 PMCID: PMC4693723 DOI: 10.1002/iid3.80] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/27/2015] [Accepted: 08/10/2015] [Indexed: 02/06/2023]
Abstract
Clinical and experimental evidence indicate that polymorphisms within the interleukin 4 (IL‐4) receptor (IL‐4R) chain are sufficient for altered strength of IL‐4/IL‐13 signaling, leading to an exaggerated allergic inflammatory response and increase susceptibility to allergic phenotypes. In the present study, we show that ablation of IL‐4Rα–induced phosphatidylinositol 3‐kinase (PI3K) activating signal by germline point mutation within the IL‐4Rα motif (Y500F) did not alter susceptibility to IgE‐mediated, food‐induced experimental anaphylaxis. Moreover, diarrhea occurrence, antigen‐specific IgE and intestinal mastocytosis were comparable between WT and IL‐4RαY500F mice. However, mice unable to stimulate IL‐4Rα–mediated PI3K signaling had accelerated disease progression. Notably, the accelerated anaphylactic response was associated with more rapid histamine‐induced hypovolemia. Mechanistic in vitro and in vivo analyses revealed that endothelial IL‐4Rα PI3K signaling negatively regulates the histamine‐induced endothelial leak response. These results define an unanticipated role for IL‐4Rα–mediated PI3K signaling in negative regulation of IgE‐mediated anaphylactic reactions.
Collapse
Affiliation(s)
- Jane Sledd
- Divisions of Allergy and Immunology and of Immunobiology Department of Pediatrics University of Cincinnati College of Medicine Cincinnati Children's Hospital Medical Center 3333 Burnet Avenue Cincinnati OH 45229
| | - David Wu
- Divisions of Allergy and Immunology and of Immunobiology Department of Pediatrics University of Cincinnati College of Medicine Cincinnati Children's Hospital Medical Center 3333 Burnet Avenue Cincinnati OH 45229
| | - Richard Ahrens
- Divisions of Allergy and Immunology and of Immunobiology Department of Pediatrics University of Cincinnati College of Medicine Cincinnati Children's Hospital Medical Center 3333 Burnet Avenue Cincinnati OH 45229
| | - Jeebong Lee
- Divisions of Allergy and Immunology and of Immunobiology Department of Pediatrics University of Cincinnati College of Medicine Cincinnati Children's Hospital Medical Center 3333 Burnet Avenue Cincinnati OH 45229
| | - Lisa Waggoner
- Divisions of Allergy and Immunology and of Immunobiology Department of Pediatrics University of Cincinnati College of Medicine Cincinnati Children's Hospital Medical Center 3333 Burnet Avenue Cincinnati OH 45229
| | - Ying Ting Tsai
- Divisions of Allergy and Immunology and of Immunobiology Department of Pediatrics University of Cincinnati College of Medicine Cincinnati Children's Hospital Medical Center 3333 Burnet Avenue Cincinnati OH 45229
| | - Yui-Hsi Wang
- Divisions of Allergy and Immunology and of Immunobiology Department of Pediatrics University of Cincinnati College of Medicine Cincinnati Children's Hospital Medical Center 3333 Burnet Avenue Cincinnati OH 45229
| | - Simon P Hogan
- Divisions of Allergy and Immunology and of Immunobiology Department of Pediatrics University of Cincinnati College of Medicine Cincinnati Children's Hospital Medical Center 3333 Burnet Avenue Cincinnati OH 45229
| |
Collapse
|
17
|
|
18
|
Stone SF, Bosco A, Jones A, Cotterell CL, van Eeden PE, Arendts G, Fatovich DM, Brown SGA. Genomic responses during acute human anaphylaxis are characterized by upregulation of innate inflammatory gene networks. PLoS One 2014; 9:e101409. [PMID: 24983946 PMCID: PMC4077795 DOI: 10.1371/journal.pone.0101409] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 05/13/2014] [Indexed: 12/24/2022] Open
Abstract
Background Systemic spread of immune activation and mediator release is required for the development of anaphylaxis in humans. We hypothesized that peripheral blood leukocyte (PBL) activation plays a key role. Objective To characterize PBL genomic responses during acute anaphylaxis. Methods PBL samples were collected at three timepoints from six patients presenting to the Emergency Department (ED) with acute anaphylaxis and six healthy controls. Gene expression patterns were profiled on microarrays, differentially expressed genes were identified, and network analysis was employed to explore underlying mechanisms. Results Patients presented with moderately severe anaphylaxis after oral aspirin (2), peanut (2), bee sting (1) and unknown cause (1). Two genes were differentially expressed in patients compared to controls at ED arrival, 67 genes at 1 hour post-arrival and 2,801 genes at 3 hours post-arrival. Network analysis demonstrated that three inflammatory modules were upregulated during anaphylaxis. Notably, these modules contained multiple hub genes, which are known to play a central role in the regulation of innate inflammatory responses. Bioinformatics analyses showed that the data were enriched for LPS-like and TNF activation signatures. Conclusion PBL genomic responses during human anaphylaxis are characterized by dynamic expression of innate inflammatory modules. Upregulation of these modules was observed in patients with different reaction triggers. Our findings indicate a role for innate immune pathways in the pathogenesis of human anaphylaxis, and the hub genes identified in this study represent logical candidates for follow-up studies.
Collapse
Affiliation(s)
- Shelley F. Stone
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research and the University of Western Australia, Perth, Australia
- Department of Emergency Medicine, Royal Perth Hospital, Perth, Australia
- * E-mail:
| | - Anthony Bosco
- Telethon Kids Institute and the Centre for Child Health Research, University of Western Australia, Perth, Australia
| | - Anya Jones
- Telethon Kids Institute and the Centre for Child Health Research, University of Western Australia, Perth, Australia
| | - Claire L. Cotterell
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research and the University of Western Australia, Perth, Australia
- Department of Emergency Medicine, Royal Perth Hospital, Perth, Australia
| | - Pauline E. van Eeden
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research and the University of Western Australia, Perth, Australia
- Department of Emergency Medicine, Royal Perth Hospital, Perth, Australia
| | - Glenn Arendts
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research and the University of Western Australia, Perth, Australia
- Department of Emergency Medicine, Royal Perth Hospital, Perth, Australia
| | - Daniel M. Fatovich
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research and the University of Western Australia, Perth, Australia
- Department of Emergency Medicine, Royal Perth Hospital, Perth, Australia
| | - Simon G. A. Brown
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research and the University of Western Australia, Perth, Australia
- Department of Emergency Medicine, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
19
|
Yao JH, Cui M, Li MT, Liu YN, He QH, Xiao JJ, Bai Y. Angiopoietin1 inhibits mast cell activation and protects against anaphylaxis. PLoS One 2014; 9:e89148. [PMID: 24586553 PMCID: PMC3929638 DOI: 10.1371/journal.pone.0089148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/14/2014] [Indexed: 01/13/2023] Open
Abstract
Since morbidity and mortality rates of anaphylaxis diseases have been increasing year by year, how to prevent and manage these diseases effectively has become an important issue. Mast cells play a central regulatory role in allergic diseases. Angiopoietin1 (Ang-1) exhibits anti-inflammatory properties by inhibiting vascular permeability, leukocyte migration and cytokine production. However, Ang-1's function in mast cell activation and anaphylaxis diseases is unknown. The results of our study suggest that Ang-1 decreased lipopolysaccharide (LPS)-induced pro-inflammatory cytokines production of mast cells by suppressing IκB phosphorylation and NF-κB nuclear translocation. Ang-1 also strongly inhibited compound 48/80 induced and FcεRI-mediated mast cells degranulation by decreasing intracellular calcium levels in vitro. In vivo lentivirus-mediated delivery of Ang-1 in mice exhibited alleviated leakage in IgE-dependent passive cutaneous anaphylaxis (PCA). Furthermore, exogenous Ang-1 intervention treatment prevented mice from compound 48/80-induced mesentery mast cell degranulation, attenuated increases in pro-inflammatory cytokines, relieved lung injury, and improved survival in anaphylaxis shock. The results of our study reveal, for the first time, the important role of Ang-1 in the activation of mast cells, and identify a therapeutic effect of Ang-1 on anaphylaxis diseases.
Collapse
Affiliation(s)
- Jun-Hua Yao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ming Cui
- Department of Cardiology, Peking University Third Hospital, Beijing, China
| | - Meng-Tao Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yi-Nan Liu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qi-Hua He
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jun-Jun Xiao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- * E-mail:
| |
Collapse
|
20
|
Stone SF, Isbister GK, Shahmy S, Mohamed F, Abeysinghe C, Karunathilake H, Ariaratnam A, Jacoby-Alner TE, Cotterell CL, Brown SGA. Immune response to snake envenoming and treatment with antivenom; complement activation, cytokine production and mast cell degranulation. PLoS Negl Trop Dis 2013; 7:e2326. [PMID: 23936562 PMCID: PMC3723557 DOI: 10.1371/journal.pntd.0002326] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/12/2013] [Indexed: 01/09/2023] Open
Abstract
Background Snake bite is one of the most neglected public health issues in poor rural communities worldwide. In addition to the clinical effects of envenoming, treatment with antivenom frequently causes serious adverse reactions, including hypersensitivity reactions (including anaphylaxis) and pyrogenic reactions. We aimed to investigate the immune responses to Sri Lankan snake envenoming (predominantly by Russell's viper) and antivenom treatment. Methodology/Principal Findings Plasma concentrations of Interleukin (IL)-6, IL-10, tumor necrosis factor α (TNFα), soluble TNF receptor I (sTNFRI), anaphylatoxins (C3a, C4a, C5a; markers of complement activation), mast cell tryptase (MCT), and histamine were measured in 120 Sri Lankan snakebite victims, both before and after treatment with antivenom. Immune mediator concentrations were correlated with envenoming features and the severity of antivenom-induced reactions including anaphylaxis. Envenoming was associated with complement activation and increased cytokine concentrations prior to antivenom administration, which correlated with non-specific systemic symptoms of envenoming but not with coagulopathy or neurotoxicity. Typical hypersensitivity reactions to antivenom occurred in 77/120 patients (64%), satisfying criteria for a diagnosis of anaphylaxis in 57/120 (48%). Pyrogenic reactions were observed in 32/120 patients (27%). All patients had further elevations in cytokine concentrations, but not complement activation, after the administration of antivenom, whether a reaction was noted to occur or not. Patients with anaphylaxis had significantly elevated concentrations of MCT and histamine. Conclusions/Significance We have demonstrated that Sri Lankan snake envenoming is characterized by significant complement activation and release of inflammatory mediators. Antivenom treatment further enhances the release of inflammatory mediators in all patients, with anaphylactic reactions characterised by high levels of mast cell degranulation but not further complement activation. Anaphylaxis is probably triggered by non allergen-specific activation of mast cells and may be related to the quality of available antivenom preparations, as well as a priming effect from the immune response to the venom itself. Snakebites cause life-threatening symptoms including uncontrolled bleeding and paralysis. The body's immune responses to snake venom may contribute to the severity of these symptoms but have not been well characterized in humans. Treatment with antivenom is potentially lifesaving, but also carries risk, as severe allergic reactions (anaphylaxis) are common. Anaphylaxis occurs when mast cells, triggered by either allergen-specific antibodies, other immunological mechanisms, or non-immune mechanisms, release mediators that cause skin rashes, shortness of breath and, in severe cases, life-threatening hypotension and/or hypoxia. We have studied 120 snakebite victims in Sri Lanka, both before and after treatment with antivenom. Our results have shown snakebite triggers activation of the complement cascade (an important part of the body's innate immune defence) and production of proinflammatory mediators. In addition, we have demonstrated a quite astonishing level of immune activation after antivenom treatment in virtually every person treated, regardless of whether they had a reaction to the antivenom. Half of the patients treated experienced anaphylaxis, with clear evidence of mast cell activation. Anaphylaxis to antivenom is unlikely to be triggered by allergen-specific antibodies, as patients had not been previously exposed to antivenom, but may be related to the quality of available antivenom preparations, as well as a priming effect from the immune response to the venom itself.
Collapse
Affiliation(s)
- Shelley F Stone
- Centre for Clinical Research in Emergency Medicine, Western Australian Institute for Medical Research and the University of Western Australia, Perth, Western Australia, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Food-induced anaphylaxis: mast cells as modulators of anaphylactic severity. Semin Immunopathol 2012; 34:643-53. [PMID: 22926692 DOI: 10.1007/s00281-012-0320-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/01/2012] [Indexed: 12/28/2022]
Abstract
A food-induced anaphylactic reaction can occur within seconds to a few hours following exposure to the causal food allergen and often affects multiple organ systems including gastrointestinal, cutaneous, respiratory, and cardiovascular. A conundrum in the allergy field is that consumption of the same allergen can cause reactions of vastly different severity in separate individuals; one patient may experience a mild non-life-threatening reaction characterized by pruritis of lips or urticaria whereas another may experience a life-threatening reaction that involves respiratory and cardiovascular compromise leading to loss of consciousness and sometimes death. While there are tests available to determine the predictive risk value of a positive food challenge test or clinical reactivity, there is currently no reliable method to distinguish between individuals who are at risk of mild non-life-threatening versus life-threatening reaction. Recent research has significantly advanced our understanding of the involvement of immune pathways in the effector phase of food-induced anaphylaxis; a void remains regarding our understanding of the contribution of these pathways to severity of disease. In this review, we discuss mild non-life-threatening versus life-threatening food-induced anaphylaxis and factors (co-morbidities and immune activation) that predispose individuals to more severe disease. Furthermore, we summarize recent advancements in our understanding of the involvement of underlying immune pathways in systemic and food-induced anaphylaxis in mouse systems and discuss how these pathways may contribute to more severe disease phenotype.
Collapse
|