1
|
Vidal C, Romero L, Lopez‐Freire S, Carballada‐Gonzalez F, Garcia‐Robaina JC, Gonzalez‐Fernandez T, Mendez‐Brea P, Nieto E, Ruiz‐Garcia M. Clinical Trial With a Depigmented, Polymerized Mite Mixture Extract at Maximum Concentrations. Immun Inflamm Dis 2024; 12:e70090. [PMID: 39698951 PMCID: PMC11656404 DOI: 10.1002/iid3.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Efficacy of allergen immunotherapy is dose-dependent; however, high doses of allergen may imply a greater risk of adverse reactions. OBJECTIVE To assess the safety and tolerability of subcutaneous immunotherapy (SCIT) with mixtures of mite allergen extracts, Dermatophagoides pteronyssinus/Blomia tropicalis (Dpt/Bt) and Dermatophagoides pteronyssinus/Lepidoglyphus destructor (Dpt/Ld) at maximum concentrations, in adult patients with allergic rhinitis or rhinoconjunctivitis, and controlled allergic asthma due to a clinically relevant sensitisation to these mites. METHODS An open-label, noncontrolled, nonrandomised, phase IIb clinical trial was carried out in three hospitals in Spain between September 2014 and May 2018. Patients received SCIT of either Dpt/Bt (100/1000 DPP/mL) or Dpt/Ld (100/100 DPP/mL) in two phases: a rush build-up phase on the first day (0.2 mL and 0.3 mL with a 30-min interval) and a monthly maintenance phase administration (0.5 mL) up to 48 months. RESULTS Forty patients were recruited for the study, seven allocated to the Dpt/Bt group and 33 to the Dpt/Ld. None experienced immediate or delayed systemic Grade ≥ 2 reactions (EAACI classification) (systemic reactions were mostly Grade 1) nor died during the study. Local reactions were mostly mild (0‒10 cm). Thirty-nine patients (97.5%) experienced at least one adverse event (AE). Of the 283 reported AEs, eight (2.8%) were systemic reactions experienced by six (15%) subjects and 14 (4.9%) were local reactions sustained by ten (25%) subjects. CONCLUSIONS SCIT treatment of patients with allergic rhinitis or rhinoconjunctivitis and controlled asthma with mixtures of Dpt/Bt and Dpt/Ld allergen extracts at maximum concentrations showed a favourable safety profile.
Collapse
Affiliation(s)
- Carmen Vidal
- Complejo Hospitalario de SantiagoSantiago de CompostelaSpain
| | - Laura Romero
- Complejo Hospitalario de SantiagoSantiago de CompostelaSpain
| | | | | | | | | | | | - Eva Nieto
- Medical Affairs and Clinical DepartmentLETI Pharma S.L.U.MadridSpain
| | | |
Collapse
|
2
|
Šošić L, Paolucci M, Flory S, Jebbawi F, Kündig TM, Johansen P. Allergen immunotherapy: progress and future outlook. Expert Rev Clin Immunol 2023:1-25. [PMID: 37122076 DOI: 10.1080/1744666x.2023.2209319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
INTRODUCTION Allergy, the immunological hypersensitivity to innocuous environmental compounds, is a global health problem. The disease triggers, allergens, are mostly proteins contained in various natural sources such as plant pollen, animal dander, dust mites, foods, fungi and insect venoms. Allergies can manifest with a wide range of symptoms in various organs, and be anything from just tedious to life-threatening. A majority of all allergy patients are self-treated with symptom-relieving medicines, while allergen immunotherapy (AIT) is the only causative treatment option. AREAS COVERED This review will aim to give an overview of the state-of-the-art allergy management, including the use of new biologics and the application of biomarkers, and a special emphasis and discussion on current research trends in the field of AIT. EXPERT OPINION Conventional AIT has proven effective, but the years-long treatment compromises patient compliance. Moreover, AIT is typically not offered in food allergy. Hence, there is a need for new, effective and safe AIT methods. Novel routes of administration (e.g. oral and intralymphatic), hypoallergenic AIT products and more effective adjuvants holds great promise. Most recently, the development of allergen-specific monoclonal antibodies for passive immunotherapy may also allow treatment of patients currently not treated or treatable.
Collapse
Affiliation(s)
- Lara Šošić
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Marta Paolucci
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Stephan Flory
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Fadi Jebbawi
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Pål Johansen
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| |
Collapse
|
3
|
Diamant Z, van Maaren M, Muraro A, Jesenak M, Striz I. Allergen immunotherapy for allergic asthma: The future seems bright. Respir Med 2023; 210:107125. [PMID: 36702170 DOI: 10.1016/j.rmed.2023.107125] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/25/2023]
Abstract
Allergen specific immunotherapy (AIT) is the only causal therapeutic option for allergic airway diseases including asthma and allergic rhinitis. AIT has been shown to restore the allergen immune tolerance, can modify both the early and late-onset allergen-specific airway hyperreactivity, helps to achieve disease control/remission and prevents new sensitisations. Recent real life data on long-term effectiveness of house dust mite (HDM) AIT in a large group of patients with HDM-driven asthma further underscored its unique therapeutic potential as well as confirmed previous data with pollen AIT. More widespread use of this causal treatment in select patient populations should further move this promising therapeutic field. In this mini-review, we discuss updates on new insights based on real world patient data.
Collapse
Affiliation(s)
- Zuzana Diamant
- Dept of Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Belgium; Dept of Respiratory Medicine & Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden; Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic; Dept Clin Pharm & Pharmacol, Univ Groningen, Univ Med Ctr Groningen, Groningen, Netherlands.
| | - Maurits van Maaren
- Department of Internal Medicine, Allergy and Clinical Immunology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Antonella Muraro
- Food Allergy Referral Centre, Padua University Hospital, Padua, Italy
| | - Milos Jesenak
- Department of Pediatrics, Department of Pulmonology and Phthisiology, Department of Allergology and Clinical Immunology, Jessenius Faculty of Medicine, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia
| | - Ilja Striz
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| |
Collapse
|
4
|
Hu Y, Wang Y, Lin J, Wu S, Muyldermans S, Wang S. Versatile Application of Nanobodies for Food Allergen Detection and Allergy Immunotherapy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8901-8912. [PMID: 35820160 DOI: 10.1021/acs.jafc.2c03324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The unique characteristics of camelid heavy-chain only antibody (HCAb) derived nanobodies (Nbs) have facilitated their employment as tools for research and application in extensive fields including food safety inspection, diagnosis and therapy of diseases, etc., to develop immune detecting techniques or alternative candidates of conventional antibodies as diagnostic and therapeutic reagents. The wide application in the fields of food allergen inspection and immunotherapy has not been addressed as not much results published in the literature. The robust properties and straightforward selecting strategy of Nbs impel the advantageous employment compared with monoclonal antibodies (mAbs) to establish immunoassay and serve as blocking antibodies to compete immunoglobulin E (IgE) binding epitopes on food allergens. More and more efforts have been invested to develop specific Nbs against food allergen proteins, such as macadamia allergen of Mac i 1, peanut allergen of Ara h 3, and lupine allergen of Lup an 1, which demonstrated the potential of Nbs for research and application in food allergen surveillance. Meanwhile, the paratopes of Nbs preferably targeting the unique epitopes of food allergens can provide more possibilities to serve as blocking antibodies to shield IgE binding epitopes for food allergy immunotherapy. Regardless, the research and application of Nbs in the field of food allergen and allergic reactions are expected to attract dramatic focus and produce promising research outputs.
Collapse
Affiliation(s)
- Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing Lin
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Sihao Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Üzülmez Ö, Kalic T, Breiteneder H. Advances and novel developments in molecular allergology. Allergy 2020; 75:3027-3038. [PMID: 32882057 PMCID: PMC7756543 DOI: 10.1111/all.14579] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/21/2022]
Abstract
The continuous search for new allergens and the design of allergen derivatives improves the understanding of their allergenicity and aids the design of novel diagnostic and immunotherapy approaches. This article discusses the recent developments in allergen and epitope discovery, allergy diagnostics and immunotherapy. Structural information is crucial for the elucidation of cross-reactivity of marker allergens such as the walnut Jug r 6 or that of nonhomologous allergens, as shown for the peanut allergens Ara h 1 and 2. High-throughput sequencing, liposomal nanoallergen display, bead-based assays, and protein chimeras have been used in epitope discovery. The binding of natural ligands by the birch pollen allergen Bet v 1 or the mold allergen Alt a 1 increased the stability of these allergens, which is directly linked to their allergenicity. We also report recent findings on the use of component-resolved approaches, basophil activation test, and novel technologies for improvement of diagnostics. New strategies in allergen-specific immunotherapy have also emerged, such as the use of virus-like particles, biologics or novel adjuvants. The identification of dectin-1 as a key player in allergy to tropomyosins and the formyl peptide receptor 3 in allergy to lipocalins are outstanding examples of research into the mechanism of allergic sensitization.
Collapse
Affiliation(s)
- Öykü Üzülmez
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Tanja Kalic
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| |
Collapse
|
6
|
Flicker S, Zettl I, Tillib SV. Nanobodies-Useful Tools for Allergy Treatment? Front Immunol 2020; 11:576255. [PMID: 33117377 PMCID: PMC7561424 DOI: 10.3389/fimmu.2020.576255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
In the last decade single domain antibodies (nanobodies, VHH) qualified through their unique characteristics have emerged as accepted and even advantageous alternative to conventional antibodies and have shown great potential as diagnostic and therapeutic tools. Currently nanobodies find their main medical application area in the fields of oncology and neurodegenerative diseases. According to late-breaking information, nanobodies specific for coronavirus spikes have been generated these days to test their suitability as useful therapeutics for future outbreaks. Their superior properties such as chemical stability, high affinity to a broad spectrum of epitopes, low immunogenicity, ease of their generation, selection and production proved nanobodies also to be remarkable to investigate their efficacy for passive treatment of type I allergy, an exaggerated immune reaction to foreign antigens with increasing global prevalence.
Collapse
Affiliation(s)
- Sabine Flicker
- Division of Immunopathology, Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ines Zettl
- Division of Immunopathology, Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sergei V. Tillib
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Mueller GA, Min J, Foo ACY, Pomés A, Pedersen LC. Structural Analysis of Recent Allergen-Antibody Complexes and Future Directions. Curr Allergy Asthma Rep 2019; 19:17. [PMID: 30815753 DOI: 10.1007/s11882-019-0848-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW Allergen-antibody complexes are extremely valuable in describing the detailed molecular features of epitopes. This review summarizes insights gained from recently published co-structures and what obstacles impede the acquisition of further data. RECENT FINDINGS Structural epitope data helped define the epitopes of two anti-Fel d 1 antibodies undergoing phase I clinical trials, providing a greater level of detail than was possible through hydrogen-deuterium exchange protection studies. Separately, a human camelid-like antibody structure with lysozyme described several unique features in a long variable loop that interacted with the active site cleft of Gal d 4. Finally, a co-structure conclusively demonstrated that Phl p 7 could function as a superantigen and that an antibody could simultaneously recognize two epitopes. These remarkable assertions would not have been possible without visualization of the complex. Only three new complexes have appeared in the last few years, suggesting that there are major impediments to traditional production and crystallization. The structural data was extremely valuable in describing epitopes. New techniques like cryo-EM may provide an alternative to crystallography.
Collapse
Affiliation(s)
- Geoffrey A Mueller
- National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive MD-MR-01, Research Triangle Park, NC, 27709, USA.
| | - Jungki Min
- National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive MD-MR-01, Research Triangle Park, NC, 27709, USA
| | - Alexander C Y Foo
- National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive MD-MR-01, Research Triangle Park, NC, 27709, USA
| | - Anna Pomés
- Indoor Biotechnologies, Inc., Charlottesville, VA, USA
| | - Lars C Pedersen
- National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive MD-MR-01, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
8
|
Kao ST, Kuo YH, Wang SD, Hong HJ, Lin LJ. Analogous corticosteroids, 9A and EK100, derived from solid-state-cultured mycelium of Antrodia camphorata inhibit proinflammatory cytokine expression in macrophages. Cytokine 2018; 108:136-144. [PMID: 29605763 DOI: 10.1016/j.cyto.2018.03.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 12/13/2022]
Abstract
Antrodia camphorata mycelium is used in traditional Chinese medicine in Taiwan. The wild-type mycelium is rare and expensive, so a solid-state-cultured mycelium of A. camphorata (SCMAC) has been developed. Previous studies have found SCMAC to have anti-inflammatory effects. However, the immunomodulatory effects of SCMAC and of its active phytosterol compounds EK100 and 9A on asthma remain unknown. In this study, BALB/c mice were repeatedly exposed to Dermatogoides pteronyssinus (Der p) at 1-week intervals and were orally administered crude SCMAC extract before the Der p challenge. The mice were sacrificed 72 h after the last challenge to examine the airway remodeling, inflammation, and expression profiles of cytokines and various genes. Then, 30-µg/mL Der p-stimulated MH-S cells with 9A or EK100 were collected for real-time PCR analysis, and the effects of 9A and EK100 on macrophages were evaluated. The crude extract reduced Der p-induced airway hyperresponsiveness, total serum immunoglobulin E levels, and recruitment of inflammatory cells to the bronchoalveolar lavage fluid through cytokine downregulation and Th1/Th2/Th17 response modulation. Additionally, 9A and EK100 inhibited IL-1β and IL-6 expression in alveolar macrophages. These results indicate that the pharmacologically active compounds in a crude SCMAC extract exert synergistic effects on multiple targets to relieve asthma symptoms.
Collapse
Affiliation(s)
- Shung-Te Kao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Department of Chinese Medicine, China Medical University Hospital, Taichung 40402, Taiwan.
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan; Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| | - Shulhn-Der Wang
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Hong-Jye Hong
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Li-Jen Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
9
|
Ni WW, Huang W, Wu DQ, Zhou YJ, Ji CM, Cao MD, Guo M, Sun JL, Wei JF. Expression and purification of a major allergen, Pla a 1, from Platanus acerifolia pollen and the preparation of its monoclonal antibody. Mol Med Rep 2017; 16:2887-2892. [PMID: 28677761 DOI: 10.3892/mmr.2017.6899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 04/20/2017] [Indexed: 11/05/2022] Open
Abstract
Platanus acerifolia pollen is considered an important source of airborne allergens in numerous cities. Pla a 1 is a major allergen from P. acerifolia pollen. The present study aimed to express and purify Pla a 1, and to prepare its monoclonal antibody. In the present study, the Pla a 1 gene was subcloned into a pET‑28a vector and transformed into the ArcticExpress™ (DE3) RP Escherichia coli host strain. The purified Pla a 1 was then used to immunize BALB/c mice. When serum detection was positive, spleen cells were isolated from the mice and fused with SP2/0 myeloma cells at a ratio of 10:1. Hybridoma cells were screened by indirect ELISA and limiting dilution. Positive cells were used to induce the formation of antibody‑containing ascites fluid, and the antibodies were purified using protein A‑agarose. The results of the present study demonstrated that recombinant Pla a 1 was successfully expressed and purified, and exhibited positive immunoglobulin E‑binding to serum from patients allergic to P. acerifolia. A total of 11 hybridomas that steadily secreted anti‑Pla a 1 antibody were obtained and an immunoblotting analysis indicated that all of these monoclonal antibodies specifically recognized the Pla a 1 protein. These results suggested that specific anti‑Pla a 1 antibodies may be obtained, which can be used for the rapid detection of Pla a 1 allergens and in the preparation of vaccines against P. acerifolia pollen.
Collapse
Affiliation(s)
- Wei-Wei Ni
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wen Huang
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - De-Qin Wu
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yan-Jun Zhou
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chun-Mei Ji
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Meng-Da Cao
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Miao Guo
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jin-Lu Sun
- Department of Allergy, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|