1
|
Zeng J, Wu Q, Meng XD, Wang J. Systematic review of Buzhong Yiqi method in alleviating cancer-related fatigue: a meta-analysis and exploratory network pharmacology approach. Front Pharmacol 2024; 15:1451773. [PMID: 39564104 PMCID: PMC11573511 DOI: 10.3389/fphar.2024.1451773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024] Open
Abstract
Objectives Cancer-related fatigue (CRF) is a prevalent and distressing symptom experienced by many cancer patients, necessitating effective treatments. This study utilizes meta-analysis and network pharmacology to comprehensively assess the efficacy of the Buzhong Yiqi prescription in alleviating cancer-related fatigue and to preliminarily explore the mechanism of its core drugs. Methods We included randomized controlled trials (RCTs) in cancer patients. The inclusion criteria encompassed a diagnosis of cancer-related fatigue, without limitation on cancer type, the experimental group receiving Buzhong Yiqi prescription, the control group receiving conventional treatment, patients awaiting treatment, and articles published in either English or Chinese. We conducted a search through 29 February 2024, across PubMed, Cochrane Database of Systematic Reviews, Cochrane Controlled Clinical Trials (CENTRAL), China Biomedical Literature Service (CBM), China National Knowledge Infrastructure (CNKI), WANFANG Database, and Weipu Database (VIP). Journal articles that met the inclusion criteria were selected for inclusion. Two independent investigators evaluated the quality of the included studies. A meta-analysis was performed utilizing the Stata 12.0 software package, where estimates of cancer-related fatigue were aggregated through the application of a random-effects model. We employed the Cochrane Risk of Bias Tool to evaluate potential biases in RCTs. The primary outcome measures utilized to assess the efficacy and safety of CRF treatment comprised the Revised Piper Fatigue Scale (PFS-R) and the Quality of Life Questionnaire Core 30 (EORTC QLQ-C30). The secondary outcomes encompassed the KPS score, the effective rate, the TCM syndrome score, and an evaluation of adverse reactions. The Traditional Chinese Medicine Systems Pharmacology (TCMSP) was utilized to identify the active ingredients and targets of BZD. Additionally, the Drug bank, Therapeutic Target Database (TTD), DiaGeNET, and GeneCards databases were utilized to retrieve relevant targets for CRC. The Venn diagram was employed to identify overlapping targets. Cytoscape software was utilized to construct a network of "herb-ingredient-target" and identify core targets. GO and KEGG pathway enrichment analyses were performed using R language software. Results In comparison to the control group, patients with CRF who received BZYQ prescription exhibited marked improvements in KPS score, QLQ-C30 quality of life score, and effective rate. Conversely, PFS, TCM syndrome score, and adverse reaction assessments significantly decreased. The primary active ingredients in its core drugs may exert a positive therapeutic effect on CRF by targeting molecules such as AKT1, IL6, IL1B, PTGS2, CASP3, ESR1, and BCL2, as well as through signaling pathways including TNF, IL17, TLR, NF-κB, and C-type lectin receptor. Conclusion BZYQ demonstrates significant efficacy in treating CRF with minimal adverse reactions. It can serve as a fundamental treatment for CRF in clinical practice, and the medication can be tailored to individual patients for personalized therapy. The potential pharmacological mechanism of BZYQ in treating CRF, as predicted by network pharmacology, offers a molecular foundation for clinical CRF treatment. Systematic Review Registration https://inplasy.com, identifier INPLASY202430025.
Collapse
Affiliation(s)
- Ji Zeng
- Clinical Pharmacy Department, Department of Pharmacy, Ma'anshan City Hospital of Traditional Chinese Medicine, Ma'anshan, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Qi Wu
- Department of Pharmacy, Ma'anshan City People's Hospital, Ma'anshan, China
| | - Xu-Dong Meng
- The Thyroid and Breast Surgery Department, Ma'anshan City People's Hospital, Ma'anshan, China
| | - Jian Wang
- The Thyroid and Breast Surgery Department, Ma'anshan City People's Hospital, Ma'anshan, China
| |
Collapse
|
2
|
Hansi RK, Ranjbar M, Whetstone CE, Gauvreau GM. Regulation of Airway Epithelial-Derived Alarmins in Asthma: Perspectives for Therapeutic Targets. Biomedicines 2024; 12:2312. [PMID: 39457624 PMCID: PMC11505104 DOI: 10.3390/biomedicines12102312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Asthma is a chronic respiratory condition predominantly driven by a type 2 immune response. Epithelial-derived alarmins such as thymic stromal lymphopoietin (TSLP), interleukin (IL)-33, and IL-25 orchestrate the activation of downstream Th2 cells and group 2 innate lymphoid cells (ILC2s), along with other immune effector cells. While these alarmins are produced in response to inhaled triggers, such as allergens, respiratory pathogens or particulate matter, disproportionate alarmin production by airway epithelial cells can lead to asthma exacerbations. With alarmins produced upstream of the type 2 inflammatory cascade, understanding the pathways by which these alarmins are regulated and expressed is critical to further explore new therapeutics for the treatment of asthmatic patients. This review emphasizes the critical role of airway epithelium and epithelial-derived alarmins in asthma pathogenesis and highlights the potential of targeting alarmins as a promising therapeutic to improve outcomes for asthma patients.
Collapse
Affiliation(s)
| | | | | | - Gail M. Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (R.K.H.); (M.R.); (C.E.W.)
| |
Collapse
|
3
|
Colaço M, Cruz MT, de Almeida LP, Borges O. Mannose and Lactobionic Acid in Nasal Vaccination: Enhancing Antigen Delivery via C-Type Lectin Receptors. Pharmaceutics 2024; 16:1308. [PMID: 39458637 PMCID: PMC11510408 DOI: 10.3390/pharmaceutics16101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Nasal vaccines are a promising strategy for enhancing mucosal immune responses and preventing diseases at mucosal sites by stimulating the secretion of secretory IgA, which is crucial for early pathogen neutralization. However, designing effective nasal vaccines is challenging due to the complex immunological mechanisms in the nasal mucosa, which must balance protection and tolerance against constant exposure to inhaled pathogens. The nasal route also presents unique formulation and delivery hurdles, such as the mucous layer hindering antigen penetration and immune cell access. METHODS This review focuses on cutting-edge approaches to enhance nasal vaccine delivery, particularly those targeting C-type lectin receptors (CLRs) like the mannose receptor and macrophage galactose-type lectin (MGL) receptor. It elucidates the roles of these receptors in antigen recognition and uptake by antigen-presenting cells (APCs), providing insights into optimizing vaccine delivery. RESULTS While a comprehensive examination of targeted glycoconjugate vaccine development is outside the scope of this study, we provide key examples of glycan-based ligands, such as lactobionic acid and mannose, which can selectively target CLRs in the nasal mucosa. CONCLUSIONS With the rise of new viral infections, this review aims to facilitate the design of innovative vaccines and equip researchers, clinicians, and vaccine developers with the knowledge to enhance immune defenses against respiratory pathogens, ultimately protecting public health.
Collapse
Affiliation(s)
- Mariana Colaço
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria T. Cruz
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Olga Borges
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
4
|
Reis E Sousa C, Yamasaki S, Brown GD. Myeloid C-type lectin receptors in innate immune recognition. Immunity 2024; 57:700-717. [PMID: 38599166 DOI: 10.1016/j.immuni.2024.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
C-type lectin receptors (CLRs) expressed by myeloid cells constitute a versatile family of receptors that play a key role in innate immune recognition. Myeloid CLRs exhibit a remarkable ability to recognize an extensive array of ligands, from carbohydrates and beyond, and encompass pattern-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), and markers of altered self. These receptors, classified into distinct subgroups, play pivotal roles in immune recognition and modulation of immune responses. Their intricate signaling pathways orchestrate a spectrum of cellular responses, influencing processes such as phagocytosis, cytokine production, and antigen presentation. Beyond their contributions to host defense in viral, bacterial, fungal, and parasitic infections, myeloid CLRs have been implicated in non-infectious diseases such as cancer, allergies, and autoimmunity. A nuanced understanding of myeloid CLR interactions with endogenous and microbial triggers is starting to uncover the context-dependent nature of their roles in innate immunity, with implications for therapeutic intervention.
Collapse
Affiliation(s)
- Caetano Reis E Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK.
| | - Sho Yamasaki
- Molecular Immunology, Research Institute for Microbial Diseases, Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan.
| | - Gordon D Brown
- MRC Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
5
|
Nieto-García A, Abel-Fernández E, Nieto-Cid M, Pineda de la Losa F. 360° approach to the patient with mite allergy: from scientific evidence to clinical practice. FRONTIERS IN ALLERGY 2024; 5:1298816. [PMID: 38379594 PMCID: PMC10876833 DOI: 10.3389/falgy.2024.1298816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
In the recent years, several important advances have been made in the diagnosis of allergy using molecular techniques. The aetiological diagnosis of allergy using molecular components of allergens allows a more precise definition of the patient's IgE repertoire. Precision medicine is a structural model aimed at personalising healthcare and places the patient at the centre of the specialist's decision-making process. To this end, an accurate characterisation of the external exposome at a molecular level and their putative role as clinically relevant allergens is essential to elucidate the phenotypic diversity of atopic disease, with a view to personalising diagnosis and therapy. It has been proposed a decision algorithm, the Top-Down approach, where the clinical history is set first and is followed by the use of skin tests or specific IgE techniques, which facilitates the clinicians to make decisions. The therapeutic intervention driven by the standard diagnostic approach, but supported by these innovative tools, can lead to a better phenotyping of highly complex patients, and a more appropriate prescription of AIT. To this end, the allergen extracts used for diagnosis require to be of proven quality and contain the most relevant allergens. Likewise, allergen vaccines must gather efficacy, safety, duration, and patient compliance, hence the demand for new vaccines to overcome these drawbacks.
Collapse
Affiliation(s)
- Antonio Nieto-García
- Pediatric Allergy and Pneumology Unit, La Fe Hospital, Valencia, Spain
- La Fe Health Research Institute, Valencia, Spain
| | | | - María Nieto-Cid
- Allergy Service, University Hospital of La Plana, Vila-real, Spain
| | | |
Collapse
|
6
|
Kawahara E, Shibata T, Hirai T, Yoshioka Y. Non-glycosylated G protein with CpG ODN provides robust protection against respiratory syncytial virus without inducing eosinophilia. Front Immunol 2023; 14:1282016. [PMID: 38169867 PMCID: PMC10758452 DOI: 10.3389/fimmu.2023.1282016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Respiratory syncytial virus (RSV) vaccines targeting the fusion glycoprotein (F protein) are highly effective clinically in preventing RSV challenges. The attachment glycoprotein (G protein) is a potentially effective vaccine antigen candidate, as it is important for cell adhesion during infection. However, vaccine-associated enhanced diseases in mice, such as eosinophilic lung inflammation following RSV challenge, are a concern with G protein vaccines. This study aimed to design an effective G protein vaccine with enhanced safety and efficacy by evaluating the efficacy and adverse reactions of vaccines composed of different recombinant G proteins and adjuvants in mice. Methods Mice were subcutaneously immunized with glycosylated G protein expressed in mammalian cells (mG), non-glycosylated G protein expressed in Escherichia coli (eG), or F protein with or without aluminum salts (alum), CpG oligodeoxynucleotide (CpG ODN), or AddaVax. After vaccination, the levels of G-specific antibody and T-cell responses were measured. The immunized mice were challenged with RSV and examined for the viral load in the lungs and nasal turbinates, lung-infiltrating cells, and lung pathology. Results mG with any adjuvant was ineffective at inducing G-specific antibodies and had difficulty achieving both protection against RSV challenge and eosinophilia suppression. In particular, mG+CpG ODN induced G-specific T helper 1 (Th1) cells but only a few G-specific antibodies and did not protect against RSV challenge. However, eG+CpG ODN induced high levels of G-specific antibodies and Th1 cells and protected against RSV challenge without inducing pulmonary inflammation. Moreover, the combination vaccine of eG+F+CpG ODN showed greater protection against upper respiratory tract RSV challenge than using each single antigen vaccine alone. Discussion These results indicate that the efficacy of recombinant G protein vaccines can be enhanced without inducing adverse reactions by using appropriate antigens and adjuvants, and their efficacy is further enhanced in the combination vaccine with F protein. These data provide valuable information for the clinical application of G protein vaccines.
Collapse
Affiliation(s)
- Eigo Kawahara
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Vaccine Creation Group, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takehiko Shibata
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| | - Toshiro Hirai
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Vaccine Creation Group, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Yasuo Yoshioka
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Vaccine Creation Group, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
- Innovative Vaccine Research and Development Center, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| |
Collapse
|
7
|
Khatri K, O'Malley A, Linn C, Kowal K, Chruszcz M. Role of Small Molecule Ligands in IgE-Mediated Allergy. Curr Allergy Asthma Rep 2023; 23:497-508. [PMID: 37351723 PMCID: PMC11490272 DOI: 10.1007/s11882-023-01100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/24/2023]
Abstract
PURPOSE OF REVIEW A significant fraction of allergens bind small molecular ligands, and many of these compounds are classified as lipids. However, in most cases, we do not know the role that is played by the ligands in the allergic sensitization or allergic effector phases. RECENT FINDINGS More effort is dedicated toward identification of allergens' ligands. This resulted in identification of some lipidic compounds that can play active immunomodulatory roles or impact allergens' molecular and allergic properties. Four allergen families (lipocalins, NPC2, nsLTP, and PR-10) are among the best characterized in terms of their ligand-binding properties. Allergens from these four families are able to bind many chemically diverse molecules. These molecules can directly interact with human immune system and/or affect conformation and stability of allergens. While there is more data on the allergens and their small molecular ligands, we are just starting to understand their role in allergy.
Collapse
Affiliation(s)
- Kriti Khatri
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Andrea O'Malley
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Christina Linn
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA
| | - Krzysztof Kowal
- Department of Experimental Allergology and Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Maksymilian Chruszcz
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA.
| |
Collapse
|