1
|
Abstract
PURPOSE OF REVIEW In addition to their effects on glycemic control, two specific classes of relatively new anti-diabetic drugs, namely the sodium glucose co-transporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1RA) have demonstrated reduced rates of major adverse cardiovascular events (MACE) in subjects with type 2 diabetes (T2D) at high risk for cardiovascular disease (CVD). This review summarizes recent experimental results that inform putative molecular mechanisms underlying these benefits. RECENT FINDINGS SGLT2i and GLP-1RA exert cardiovascular effects by targeting in both common and distinctive ways (A) several mediators of macro- and microvascular pathophysiology: namely (A1) inflammation and atherogenesis, (A2) oxidative stress-induced endothelial dysfunction, (A3) vascular smooth muscle cell reactive oxygen species (ROS) production and proliferation, and (A4) thrombosis. These agents also exhibit (B) hemodynamic effects through modulation of (B1) natriuresis/diuresis and (B2) the renin-angiotensin-aldosterone system. This review highlights that while GLP-1RA exert direct effects on vascular (endothelial and smooth muscle) cells, the effects of SGLT2i appear to include the activation of signaling pathways that prevent adverse vascular remodeling. Both SGLT2i and GLP-1RA confer hemodynamic effects that counter adverse cardiac remodeling.
Collapse
Affiliation(s)
- Dorrin Zarrin Khat
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Mansoor Husain
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
- Department of Medicine, University of Toronto, Toronto, Canada.
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.
- Heart and Stroke Richard Lewar Centre of Excellence, University of Toronto, Toronto, Canada.
- Ted Rogers Centre for Heart Research, University Health Network, Toronto, Canada.
- Peter Munk Cardiac Centre, University Health Network, Toronto, Canada.
| |
Collapse
|
2
|
Zocchi E, Hontecillas R, Leber A, Einerhand A, Carbo A, Bruzzone S, Tubau-Juni N, Philipson N, Zoccoli-Rodriguez V, Sturla L, Bassaganya-Riera J. Abscisic Acid: A Novel Nutraceutical for Glycemic Control. Front Nutr 2017; 4:24. [PMID: 28660193 PMCID: PMC5468461 DOI: 10.3389/fnut.2017.00024] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/19/2017] [Indexed: 01/03/2023] Open
Abstract
Abscisic acid is naturally present in fruits and vegetables, and it plays an important role in managing glucose homeostasis in humans. According to the latest U.S. dietary survey, about 92% of the population might have a deficient intake of ABA due to their deficient intake of fruits and vegetables. This review summarizes the in vitro, preclinical, mechanistic, and human translational findings obtained over the past 15 years in the study of the role of ABA in glycemic control. In 2007, dietary ABA was first reported to ameliorate glucose tolerance and obesity-related inflammation in mice. The most recent findings regarding the topic of ABA and its proposed receptor lanthionine synthetase C-like 2 in glycemic control and their interplay with insulin and glucagon-like peptide-1 suggest a major role for ABA in the physiological response to a glucose load in humans. Moreover, emerging evidence suggests that the ABA response might be dysfunctional in diabetic subjects. Follow on intervention studies in healthy individuals show that low-dose dietary ABA administration exerts a beneficial effect on the glycemia and insulinemia profiles after oral glucose load. These recent findings showing benefits in humans, together with extensive efficacy data in mouse models of diabetes and inflammatory disease, suggest the need for reference ABA values and its possible exploitation of the glycemia-lowering effects of ABA for preventative purposes. Larger clinical studies on healthy, prediabetic, and diabetic subjects are needed to determine whether addressing the widespread dietary ABA deficiency improves glucose control in humans.
Collapse
Affiliation(s)
- Elena Zocchi
- Department of Experimental Medicine, Section of Biochemistry and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Raquel Hontecillas
- BioTherapeutics Inc., Blacksburg, VA, United States.,Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| | - Andrew Leber
- BioTherapeutics Inc., Blacksburg, VA, United States
| | | | - Adria Carbo
- BioTherapeutics Inc., Blacksburg, VA, United States
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Nuria Tubau-Juni
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| | | | | | - Laura Sturla
- Department of Experimental Medicine, Section of Biochemistry and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Josep Bassaganya-Riera
- BioTherapeutics Inc., Blacksburg, VA, United States.,Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|