1
|
Pan Q, Chen C, Yang YJ. Top Five Stories of the Cellular Landscape and Therapies of Atherosclerosis: Current Knowledge and Future Perspectives. Curr Med Sci 2024; 44:1-27. [PMID: 38057537 DOI: 10.1007/s11596-023-2818-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/22/2023] [Indexed: 12/08/2023]
Abstract
Atherosclerosis (AS) is characterized by impairment and apoptosis of endothelial cells, continuous systemic and focal inflammation and dysfunction of vascular smooth muscle cells, which is documented as the traditional cellular paradigm. However, the mechanisms appear much more complicated than we thought since a bulk of studies on efferocytosis, transdifferentiation and novel cell death forms such as ferroptosis, pyroptosis, and extracellular trap were reported. Discovery of novel pathological cellular landscapes provides a large number of therapeutic targets. On the other side, the unsatisfactory therapeutic effects of current treatment with lipid-lowering drugs as the cornerstone also restricts the efforts to reduce global AS burden. Stem cell- or nanoparticle-based strategies spurred a lot of attention due to the attractive therapeutic effects and minimized adverse effects. Given the complexity of pathological changes of AS, attempts to develop an almighty medicine based on single mechanisms could be theoretically challenging. In this review, the top stories in the cellular landscapes during the initiation and progression of AS and the therapies were summarized in an integrated perspective to facilitate efforts to develop a multi-targets strategy and fill the gap between mechanism research and clinical translation. The future challenges and improvements were also discussed.
Collapse
Affiliation(s)
- Qi Pan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Cheng Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
2
|
Lazzarato L, Bianchi L, Andolfo A, Granata A, Lombardi M, Sinelli M, Rolando B, Carini M, Corsini A, Fruttero R, Arnaboldi L. Proteomics Studies Suggest That Nitric Oxide Donor Furoxans Inhibit In Vitro Vascular Smooth Muscle Cell Proliferation by Nitric Oxide-Independent Mechanisms. Molecules 2023; 28:5724. [PMID: 37570694 PMCID: PMC10420201 DOI: 10.3390/molecules28155724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Physiologically, smooth muscle cells (SMC) and nitric oxide (NO) produced by endothelial cells strictly cooperate to maintain vasal homeostasis. In atherosclerosis, where this equilibrium is altered, molecules providing exogenous NO and able to inhibit SMC proliferation may represent valuable antiatherosclerotic agents. Searching for dual antiproliferative and NO-donor molecules, we found that furoxans significantly decreased SMC proliferation in vitro, albeit with different potencies. We therefore assessed whether this property is dependent on their thiol-induced ring opening. Indeed, while furazans (analogues unable to release NO) are not effective, furoxans' inhibitory potency parallels with the electron-attractor capacity of the group in 3 of the ring, making this effect tunable. To demonstrate whether their specific block on G1-S phase could be NO-dependent, we supplemented SMCs with furoxans and inhibitors of GMP- and/or of the polyamine pathway, which regulate NO-induced SMC proliferation, but they failed in preventing the antiproliferative effect. To find the real mechanism of this property, our proteomics studies revealed that eleven cellular proteins (with SUMO1 being central) and networks involved in cell homeostasis/proliferation are modulated by furoxans, probably by interaction with adducts generated after degradation. Altogether, thanks to their dual effect and pharmacological flexibility, furoxans may be evaluated in the future as antiatherosclerotic molecules.
Collapse
Affiliation(s)
- Loretta Lazzarato
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (L.L.); (B.R.); (R.F.)
| | - Laura Bianchi
- Functional Proteomics Laboratory, Department of Life Sciences, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| | - Annapaola Andolfo
- Proteomics and Metabolomics Facility (ProMeFa), Center for Omics Sciences (COSR), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy;
| | - Agnese Granata
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| | - Matteo Lombardi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| | - Matteo Sinelli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| | - Barbara Rolando
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (L.L.); (B.R.); (R.F.)
| | - Marina Carini
- Department of Pharmaceutical Sciences “Pietro Pratesi”, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy;
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| | - Roberta Fruttero
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (L.L.); (B.R.); (R.F.)
| | - Lorenzo Arnaboldi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| |
Collapse
|
3
|
Jiang H, Guo Z, Zeng K, Tang H, Tan H, Min R, Huang C. IL-1β knockdown inhibits cigarette smoke extract-induced inflammation and apoptosis in vascular smooth muscle cells. PLoS One 2023; 18:e0277719. [PMID: 36791122 PMCID: PMC9931126 DOI: 10.1371/journal.pone.0277719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
OBJECTIVE This study was aimed to investigate the role of interleukin-1β (IL-1β) in cigarette smoke extract (CSE)-induced apoptosis in vascular smooth muscle cells and the underlying mechanism in a rat derived cell line. METHODS Rat thoracic aortic smooth muscle cells (A7r5) were divided into six groups including control, CSE (model), CSE+ overexpression empty vector (OvExp-EV), CSE+IL-1β knockdown (KD), and CSE+ IL-1β knockdown empty vector (KD-EV). The mRNA expression levels of IL-1β and pregnancy-associated plasma protein A (PAPP-A) were detected by quantitative polymerase chain reaction (qPCR). The apoptosis of A7r5 cells was detected by flow cytometry. The expression levels of inflammatory mediators (TNFα, IL-6 and IL-8) and apoptotic proteins (Bax and Bcl-2) were determined by western blot. RESULTS CSE induced significant apoptosis in vascular smooth muscle cells (P < 0.01) and elevated the mRNA levels of IL-1β and PAPP-A (P < 0.01). CSE administration increased protein expression of Bax, TNF-α, IL-6, and IL-8, with significantly reduced Bcl-2 expression (P < 0.01). IL-1β knockdown significantly decreased cell apoptosis via regulating the expression of these proteins (P < 0.05 or P < 0.01). CONCLUSION IL-1β is involved in CSE-induced PAPP-A expression and apoptosis in vascular smooth muscle cells, which might be considered as a target for preventing of cardiovascular diseases caused by cigarette smoking.
Collapse
Affiliation(s)
- Hongfeng Jiang
- Department of Geriatrics, Wuhan Fourth Hospital, Affiliated Puai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| | - Zhangqiang Guo
- Department of Emergency Medicine, Wuhan Fourth Hospital, Affiliated Puai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Kun Zeng
- Department of Geriatrics, Wuhan Fourth Hospital, Affiliated Puai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Haiyan Tang
- Department of Geriatrics, Wuhan Fourth Hospital, Affiliated Puai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Hanxuan Tan
- Department of Geriatrics, Wuhan Fourth Hospital, Affiliated Puai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Rui Min
- Department of Geriatrics, Wuhan Fourth Hospital, Affiliated Puai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Caihua Huang
- Department of Geriatrics, Wuhan Fourth Hospital, Affiliated Puai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Chiorescu RM, Mocan M, Inceu AI, Buda AP, Blendea D, Vlaicu SI. Vulnerable Atherosclerotic Plaque: Is There a Molecular Signature? Int J Mol Sci 2022; 23:13638. [PMID: 36362423 PMCID: PMC9656166 DOI: 10.3390/ijms232113638] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 08/18/2023] Open
Abstract
Atherosclerosis and its clinical manifestations, coronary and cerebral artery diseases, are the most common cause of death worldwide. The main pathophysiological mechanism for these complications is the rupture of vulnerable atherosclerotic plaques and subsequent thrombosis. Pathological studies of the vulnerable lesions showed that more frequently, plaques rich in lipids and with a high level of inflammation, responsible for mild or moderate stenosis, are more prone to rupture, leading to acute events. Identifying the vulnerable plaques helps to stratify patients at risk of developing acute vascular events. Traditional imaging methods based on plaque appearance and size are not reliable in prediction the risk of rupture. Intravascular imaging is a novel technique able to identify vulnerable lesions, but it is invasive and an operator-dependent technique. This review aims to summarize the current data from literature regarding the main biomarkers involved in the attempt to diagnose vulnerable atherosclerotic lesions. These biomarkers could be the base for risk stratification and development of the new therapeutic drugs in the treatment of patients with vulnerable atherosclerotic plaques.
Collapse
Affiliation(s)
- Roxana Mihaela Chiorescu
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| | - Mihaela Mocan
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| | - Andreea Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine, 400349 Cluj-Napoca, Romania
- Department of Cardiology, Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania
| | - Andreea Paula Buda
- Department of Cardiology, Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania
| | - Dan Blendea
- Department of Cardiology, Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania
- Department of Cardiology, Iuliu Hațieganu University of Medicine and Pharmacy, 400437 Cluj-Napoca, Romania
| | - Sonia Irina Vlaicu
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Ren ZL, Li CX, Ma CY, Chen D, Chen JH, Xu WX, Chen CA, Cheng FF, Wang XQ. Linking Nonalcoholic Fatty Liver Disease and Brain Disease: Focusing on Bile Acid Signaling. Int J Mol Sci 2022; 23:13045. [PMID: 36361829 PMCID: PMC9654021 DOI: 10.3390/ijms232113045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/01/2023] Open
Abstract
A metabolic illness known as non-alcoholic fatty liver disease (NAFLD), affects more than one-quarter of the world's population. Bile acids (BAs), as detergents involved in lipid digestion, show an abnormal metabolism in patients with NAFLD. However, BAs can affect other organs as well, such as the brain, where it has a neuroprotective effect. According to a series of studies, brain disorders may be extrahepatic manifestations of NAFLD, such as depression, changes to the cerebrovascular system, and worsening cognitive ability. Consequently, we propose that NAFLD affects the development of brain disease, through the bile acid signaling pathway. Through direct or indirect channels, BAs can send messages to the brain. Some BAs may operate directly on the central Farnesoid X receptor (FXR) and the G protein bile acid-activated receptor 1 (GPBAR1) by overcoming the blood-brain barrier (BBB). Furthermore, glucagon-like peptide-1 (GLP-1) and the fibroblast growth factor (FGF) 19 are released from the intestine FXR and GPBAR1 receptors, upon activation, both of which send signals to the brain. Inflammatory, systemic metabolic disorders in the liver and brain are regulated by the bile acid-activated receptors FXR and GPBAR1, which are potential therapeutic targets. From a bile acid viewpoint, we examine the bile acid signaling changes in NAFLD and brain disease. We also recommend the development of dual GPBAR1/FXR ligands to reduce side effects and manage NAFLD and brain disease efficiently.
Collapse
Affiliation(s)
- Zi-Lin Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chang-Xiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chong-Yang Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Dan Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jia-Hui Chen
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| | - Wen-Xiu Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cong-Ai Chen
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| | - Fa-Feng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xue-Qian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
6
|
Bai X, Zhang H, Li Z, Chen O, He H, Jia X, Zou L. Platelet-derived extracellular vesicles encapsulate microRNA-34c-5p to ameliorate inflammatory response of coronary artery endothelial cells via PODXL-mediated P38 MAPK signaling pathway. Nutr Metab Cardiovasc Dis 2022; 32:2424-2438. [PMID: 36096977 DOI: 10.1016/j.numecd.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND AND AIMS Low-grade chronic inflammation was reported to serve as a distinctive pathophysiologic feature of coronary artery disease (CAD), the leading cause of death around the world. Herein, the current study aimed to explore whether and how microRNA-34c-5p (miR-34c-5p), a miRNA enriched in extracellular vesicles (EVs) originated from the activated platelet (PLT-EVs), affects the inflammation of human coronary artery endothelial cells (HCAECs). METHODS AND RESULTS HCAECs were established as an in vitro cell model using oxidized low-density lipoprotein (ox-LDL). miR-34c-5p, an abundant miRNA in PLT-EVs, can be transferred to HCAECs and target PODXL by binding to its 3'UTR. Gain- and loss-of-function experiments of miR-34c-5p and podocalyxin (PODXL) were performed in ox-LDL-induced HCAECs. Subsequently, HCAECs were subjected to co-culture with PLT-EVs, followed by detection of the expression patterns of key pro-inflammatory factors. Either miR-34c-5p mimic or PLT-EVs harboring miR-34c-5p attenuated the ox-LDL-evoked inflammation in HCAECs by suppressing interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α). By blocking the P38 MAPK signaling pathway, miR-34c-5p-mediated depletion of PODXL contributed to protection against ox-LDL-induced inflammation. In vitro findings were further validated by findings observed in ApoE knock-out mice. Additionally, miR-34c-5p in PLT-EVs showed an athero-protective role in the murine model. CONCLUSION Altogether, our findings highlighted that miR-34c-5p in PLT-EVs could alleviate inflammation response in HCAECs by targeting PODXL and inactivation of the P38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Xuetao Bai
- Department of Anaesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China
| | - Hao Zhang
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, PR China
| | - Zhiguo Li
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, PR China
| | - Ou Chen
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, PR China
| | - Hengpeng He
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, PR China
| | - Xiukun Jia
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, PR China
| | - Lijuan Zou
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, PR China.
| |
Collapse
|
7
|
Liu G, Hu X, Li Y, Long M. Circulating long non-coding RNA Coromarker expression correlated with inflammation, coronary artery stenosis, and plaque vulnerability in patients with coronary artery disease. J Clin Lab Anal 2022; 36:e24716. [PMID: 36164725 DOI: 10.1002/jcla.24716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The aim of the study was to assess the correlation between circulating long non-coding RNA (lncRNA) OTTHUMT00000387022 (named Coromarker) expression and disease severity, inflammatory cytokine levels, and plaque vulnerability in patients with coronary artery disease (CAD). METHODS A total of 134 participants who received coronary angiography were enrolled and classified them as CAD patients (N = 89) and controls (N = 45). Blood samples were obtained from all subjects. Quantitative polymerase chain reaction was used to evaluate Coromarker expression. The enzyme-linked immunosorbent test was used to measure inflammatory cytokines including high sensitivity C reactive protein (hsCRP), interleukin (IL)-1β (IL-1β), IL-6, NOD-like receptor protein 3 (NLRP3), and markers of coronary plaque stability including matrix metallopeptidase 9 (MMP-9) and soluble CD40 ligand (sCD40L). The severity of coronary stenosis was determined from the Gensini Score. RESULTS LncRNA Coromarker expression was elevated to a greater extent in CAD patients than in control subjects before and after adjustments for age/gender (both p < 0.001); it was an independent predictor of CAD risk (area under curve: 0.824, 95% CI: 0.732-0.915). Additionally, Coromarker expression was significantly associated with Gensini Score (r = 0.574, p < 0.001), hsCRP (r = 0.221, p = 0.015), IL-1β (r = 0.351, p < 0.001), IL-6 (r = 0.286, p < 0.01), and NLRP3 levels (r = 0.312, p < 0.001). Coromarker expression was found to be linked with MMP-9 (r = 0.260, p < 0.01) and sCD40L (r = 0.441, p < 0.001). CONCLUSION Circulating lncRNA Coromarker expression correlates with increased disease severity and inflammation as well as plaque vulnerability in patients with CAD.
Collapse
Affiliation(s)
- Gang Liu
- Department of Cardiology, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou, China.,Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Xun Hu
- Department of Cardiology, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou, China.,Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Yi Li
- Department of Cardiology, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou, China.,Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Ming Long
- Department of Cardiology, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou, China.,Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| |
Collapse
|
8
|
Liu X, Bao Y, Lin Z, Tang L, Mao P. Platelets inhibit development of atherosclerosis in atherosclerotic mice. Cell Cycle 2022; 21:1222-1232. [PMID: 35213268 PMCID: PMC9103360 DOI: 10.1080/15384101.2022.2044703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Platelets can protect from lipopolysaccharide-induced septic shock by inhibiting inflammation, but it is unknown whether platelets have an anti-atherosclerotic effect. The aim of this study was to investigate the effect of platelet transfusion on atherosclerosis (AS) in a mouse model of AS. Apolipoprotein E deficiency (ApoE-/-) mice were fed with a high-fat diet (HFD) for 8 weeks to establish a mouse model of AS. Mice weekly underwent bi-weekly injection with or without platelets during AS induction (HFD+platelet). Hematoxylin-eosin (H&E), Oil Red O, and Sudan IV stainings were used to assess pathological and morphological changes in the aortic tissue. Lipid levels, and liver and kidney function were examined using an automatic biochemical analyzer. Immune histochemical assays were used to detect the infiltration and distribution of inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), IL-6, and monocyte chemotactic protein-1 (MCP-1) in the aortic arch. Western blot and enzyme-linked immunosorbent assay (ELISA) were used to examine the expression levels of TNF-α, IL-1β, IL-6, and MCP-1 in the aorta or the peripheral blood, respectively. Compared with the HFD group, AS pathological lesions from the aortic arch in the HFD+platelet group were significantly smaller and alterations in the lipid metabolism were also less pronounced. Furthermore, TNF-α, IL-1β, IL-6, and MCP-1 levels were all significantly reduced in mice that received platelet injection. Platelets transfusion can effectively ameliorate lipid metabolism, suppress the inflammatory response in the vascular wall, and inhibit the development of AS in mice.
Collapse
Affiliation(s)
- Xiaowei Liu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, P. R. China
| | - Yizhong Bao
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, P. R. China
| | - Zhang Lin
- Department of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, P. R. China
| | - Lijiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, P. R. China,Lijiang Tang Department of Cardiology, Zhejiang Hospital, 12 Lingying Road, Hangzhou, Zhejiang 310013, P. R. China Department of Cardiology, Zhejiang Hospital, Hangzhou, P. R. China
| | - Ping Mao
- Department of Cardiology, Zhejiang Hospital, Hangzhou, P. R. China,CONTACT Ping Mao Department of Cardiology, Zhejiang Hospital, 12 Lingying Road, Hangzhou, Zhejiang310013, P. R. China
| |
Collapse
|
9
|
Zhang Z, Zhao T, Xu H, Wu X. Circ_0008365 Suppresses Apoptosis, Inflammation and Extracellular Matrix Degradation of IL-1β-treated Chondrocytes in Osteoarthritis by Regulating miR-324-5p/BMPR2/NF-κB Signaling Axis. Immunol Invest 2022; 51:1598-1611. [PMID: 35172669 DOI: 10.1080/08820139.2021.2001496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Recent studies have revealed that circular RNAs (circRNAs) play crucial roles in the progression of osteoarthritis (OA). This study aimed to investigate the biological function and regulatory mechanism of circ_0008365 in OA. METHODS OA cell model in vitro was established in chondrocytes by treatment with Interleukin-1β (IL-1β). The levels of inflammatory cytokines were measured by enzyme-linked immunosorbent assay (ELISA). The expression levels of circ_0008365, microRNA-324-5p (miR-324-5p) and bone morphogenetic protein type 2 receptor (BMPR2) were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability was detected by Cell Counting Kit-8 (CCK-8) assay. Cell apoptosis was assessed using flow cytometry and caspase3 activity assays. The protein expression was determined via a western blot assay. Dual-luciferase reporter assay, RNA immunoprecipitation (RIP) and RNA pull-down assays were used to analyze the correlation between targets. RESULTS IL-1β level and miR-324-5p expression were increased, while circ_0008365 was downregulated in OA patients. IL-1β treatment-induced cell apoptosis, inflammation and extracellular matrix (ECM) degradation in chondrocytes. Besides, circ_0008365 overexpression partly relieved IL-1β-induced cell damage in chondrocytes. Circ_0008365 could interact with miR-324-5p, and BMPR2 was a downstream target of miR-324-5p. Overexpression of miR-324-5p or BMPR2 knockdown partly overturned the inhibiting effect of circ_0008365 on cell damage in IL-1β-induced chondrocytes. In addition, circ_0008365 inactivated NF-κB pathway via regulating miR-324-5p/BMPR2 axis. CONCLUSION Circ_0008365 reduced IL-1β-induced cell damage in chondrocytes via inactivating NF-κB signaling pathway and regulating miR-324-5p/BMPR2 axis.Abbreviations OA: osteoarthritis; BMPR2: bone morphogenetic protein type 2 receptor.
Collapse
Affiliation(s)
- Zilong Zhang
- Department of Spine, Zaozhuang Municipal Hospital, Zaozhuang City, China
| | - Teng Zhao
- Department of Orthopedics, Zaozhuang Hospital, Zaozhuang Mining Group, Jining City, China
| | - Haiwei Xu
- Department of Orthopedics, Zaozhuang Hospital, Zaozhuang Mining Group, Jining City, China
| | - Xing Wu
- Department of Orthopedics, Tennan Hospital, Zaozhuang Mining Group, Jining City, China
| |
Collapse
|
10
|
Li T, Tu P, Bi J, Sun Y, Yu D, Wang J, Zhao B. LncRNA Miat knockdown alleviates endothelial cell injury through regulation of miR-214-3p/Caspase-1 signalling during atherogenesis. Clin Exp Pharmacol Physiol 2021; 48:1231-1238. [PMID: 34137063 DOI: 10.1111/1440-1681.13538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/23/2023]
Abstract
Atherosclerosis is a common problem in healthy people around the world. Long noncoding RNAs (lncRNAs) play important roles in atherosclerosis. Myocardial infarction-associated transcript (Miat) is a cardiovascular disease-associated lncRNA. Its role and mechanism in atherosclerosis is still not fully clarified. Our study aims to explore the role and mechanism of lncRNA Miat in atherosclerosis. The atherosclerosis models were established both in vitro and in vivo. Real-time PCR was used to measure the expression of lncRNA Miat, miR-214, Caspase-1 and IL-1β. Western blot was performed to detect the protein expression of Caspase-1. CCK-8 assay, Tunel staining, and flow cytometry analysis were conducted to detect proliferation and apoptosis of human aortic endothelial cells (HAECs), respectively. Oil red O staining and HE staining were used to evaluated the histological changes of the aorta. The results found that lncRNA Miat was upregulated in ox-LDL-induced atherosclerosis model in vitro. The inhibition of lncRNA Miat protects against ox-LDL-induced HAEC injury, presented as increased cell viability and decreased apoptosis. LncRNA Miat and miR-214 has binding site, and CASP1, which encodes Caspase-1, is a target of miR-214. The downregulation of lncRNA Miat increased the expression of miR-214-3p and decreased the expression of Caspase-1, as well as its downstream molecule IL-1β in HAECs. However, the inhibition of miR-214-3p attenuated the effect of lncRNA Miat downregulation on HAECs. Furthermore, the downregulation of lncRNA Miat alleviated atherosclerosis in ApoE-deficient mice. Correspondingly, the expression of miR-214-3p was upregulated and Caspase-1 was downregulated after knockdown of lncRNA Miat. In conclusion, downregulation of lncRNA Miat exerts a protective effect against atherosclerosis through the regulation miR-214-3p/Caspase-1 signalling pathway. Therefore, the inhibition of lncRNA Miat expression may be an effective strategy in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Tao Li
- Department of Cardiology, The Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Peiyang Tu
- The College of Clinical Medicine, Hubei University of Science and Technology, Hubei, China
| | - Jianbo Bi
- Department of cardiology, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Yanling Sun
- The Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Dejun Yu
- The Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Jinghao Wang
- Department of Pharmacy, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Baoshan Zhao
- Department of Pathology and Pathophysiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| |
Collapse
|
11
|
Luo JW, Hu Y, Liu J, Yang H, Huang P. Interleukin-22: a potential therapeutic target in atherosclerosis. Mol Med 2021; 27:88. [PMID: 34388961 PMCID: PMC8362238 DOI: 10.1186/s10020-021-00353-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/07/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Atherosclerosis is recognized as a chronic immuno-inflammatory disease that is characterized by the accumulation of immune cells and lipids in the vascular wall. In this review, we focus on the latest advance regarding the regulation and signaling pathways of IL-22 and highlight its impacts on atherosclerosis. MAIN BODY IL-22, an important member of the IL-10 family of cytokines, is released by cells of the adaptive and innate immune system and plays a key role in the development of inflammatory diseases. The binding of IL-22 to its receptor complex can trigger a diverse array of downstream signaling pathways, in particular the JAK/STAT, to induce the expression of chemokines and proinflammatory cytokines. Recently, numerous studies suggest that IL-22 is involved in the pathogenesis of atherosclerosis by regulation of VSMC proliferation and migration, angiogenesis, inflammatory response, hypertension, and cholesterol metabolism. CONCLUSION IL-22 promotes the development of atherosclerosis by multiple mechanisms, which may be a promising therapeutic target in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Jin-Wen Luo
- Department of Cardio-Thoracic Surgery, Hunan Children's Hospital, Changsha, 410007, People's Republic of China
| | - Yuan Hu
- Department of Ultrasound Medicine, Hunan Children's Hospital, Changsha, 410007, People's Republic of China
| | - Jian Liu
- Department of Cardio-Thoracic Surgery, Hunan Children's Hospital, Changsha, 410007, People's Republic of China
| | - Huan Yang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, Changsha, Hunan, 410001, People's Republic of China.
| | - Peng Huang
- Department of Cardio-Thoracic Surgery, Hunan Children's Hospital, Changsha, 410007, People's Republic of China.
| |
Collapse
|
12
|
Xu J, Feng H, Ma L, Tan H, Yan S, Fang C. Bakkenolide‑IIIa ameliorates lipopolysaccharide‑induced inflammatory injury in human umbilical vein endothelial cells by upregulating LINC00294. Mol Med Rep 2021; 23:377. [PMID: 33760129 PMCID: PMC7986008 DOI: 10.3892/mmr.2021.12016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/04/2021] [Indexed: 01/21/2023] Open
Abstract
Inflammation, which causes injury to vascular endothelial cells, is one of the major factors associated with atherosclerosis (AS); therefore, inhibition of endothelial inflammation is a key step toward preventing AS. The present study aimed to investigate the effects of bakkenolide-IIIa (Bak-IIIa), an important active component of bakkenolides, on endothelial inflammation, as well as the mechanisms underlying such effects. Lipopolysaccharide (LPS)-damaged human umbilical vein endothelial cells (HUVECs) were treated with Bak-IIIa. The results of the MTT assay and enzyme-linked immunosorbent assay indicated that Bak-IIIa significantly alleviated survival inhibition, and decreased the levels of LPS-induced TNF-α, interleukin (IL)-1β, IL-8, and IL-6. Furthermore, long noncoding RNA (lncRNA) microarray analyses revealed 70 differentially expressed lncRNAs (DELs) in LPS-damaged HUVECs treated with Bak-IIIa. lncRNA target prediction results revealed that 44 DELs had 52 cis-targets, whereas 12 DELs covered 386 trans-targets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses of the trans-targets indicated that three GO terms were associated with inflammation. Therefore, 17 targets involved in these GO terms and six relevant DELs were screened out. Validation via reverse transcription-quantitative PCR indicated that the fold change of NR_015451 (LINC00294) was the highest among the six candidates and that overexpression of LINC00294 significantly alleviated LPS-induced survival inhibition and inflammatory damage in HUVECs. In conclusion, Bak-IIIa ameliorated LPS-induced inflammatory damage in HUVECs by upregulating LINC00294. Thus, Bak-IIIa exhibited potential for preventing vascular inflammation.
Collapse
Affiliation(s)
- Jichong Xu
- Department of Interventional Radiology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Hao Feng
- Department of Interventional Radiology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Lin Ma
- Department of Interventional Radiology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Huaqiao Tan
- Department of Interventional Radiology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Shuo Yan
- Department of Interventional Radiology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Chun Fang
- Department of Interventional Radiology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| |
Collapse
|
13
|
He X, Fan X, Bai B, Lu N, Zhang S, Zhang L. Pyroptosis is a critical immune-inflammatory response involved in atherosclerosis. Pharmacol Res 2021; 165:105447. [PMID: 33516832 DOI: 10.1016/j.phrs.2021.105447] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/28/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023]
Abstract
Pyroptosis is a form of programmed cell death activated by various stimuli and is characterized by inflammasome assembly, membrane pore formation, and the secretion of inflammatory cytokines (IL-1β and IL-18). Atherosclerosis-related risk factors, including oxidized low-density lipoprotein (ox-LDL) and cholesterol crystals, have been shown to promote pyroptosis through several mechanisms that involve ion flux, ROS, endoplasmic reticulum stress, mitochondrial dysfunction, lysosomal rupture, Golgi function, autophagy, noncoding RNAs, post-translational modifications, and the expression of related molecules. Pyroptosis of endothelial cells, macrophages, and smooth muscle cells in the vascular wall can induce plaque instability and accelerate atherosclerosis progression. In this review, we focus on the pathogenesis, influence, and therapy of pyroptosis in atherosclerosis and provide novel ideas for suppressing pyroptosis and the progression of atherosclerosis.
Collapse
Affiliation(s)
- Xiao He
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| | - Xuehui Fan
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| | - Bing Bai
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| | - Nanjuan Lu
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| | - Shuang Zhang
- General Surgery, Harbin Changzheng Hospital, 363 Xuan Hua Street, Harbin 150001, Heilongjiang Province, China.
| | - Liming Zhang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| |
Collapse
|
14
|
Neferine suppresses vascular endothelial inflammation by inhibiting the NF-κB signaling pathway. Arch Biochem Biophys 2020; 696:108595. [PMID: 33157101 DOI: 10.1016/j.abb.2020.108595] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/04/2020] [Accepted: 09/13/2020] [Indexed: 12/28/2022]
Abstract
The vascular endothelium, as the interface between the blood and the surrounding tissues, plays a pivotal role in inflammation. Neferine, which was isolated from Lotus Plumule, has many biological roles, such as antifibrotic, antioxidative, anti-inflammatory, and antineoplastic activities. We demonstrated the role of neferine in the inhibition of pro-adhesion and pro-inflammatory responses of endothelial cells in vitro. We found that neferine could significantly inhibit the adhesion of Tohoku Hospital Pediatrics-1 (THP-1) cells to primary human umbilical vein endothelial cells (HUVECs). At the molecular level, neferine could significantly alleviate the interleukin 1β (IL-1β)-induced mRNA and protein expression of intercellular adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1). Our data showed that neferine suppressed nuclear factor-κB (NF-κB) nuclear translocation and inhibited the NF-κB-p65-induced transcriptional activity of ICAM1 and VCAM1. Therefore, we concluded that neferine suppressed the inflammatory response in endothelial cells in vitro, which could be mainly due to inhibition of NF-κB signaling activation. Moreover, we found that neferine alleviated LPS-induced acute inflammation injury in vivo. Thus, neferine may serve as an effective regulator during the pathogenesis of vascular inflammatory diseases.
Collapse
|
15
|
Niu N, Yang X, Zhang BL, Liang C, Zhu D, Wang QS, Cai YX, Yang YC, Ao X, Wu MM, Zhang ZR. Endothelial epithelial sodium channel involves in high-fat diet-induced atherosclerosis in low-density lipoprotein receptor-deficient mice. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165989. [PMID: 33065235 DOI: 10.1016/j.bbadis.2020.165989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/05/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
We previously showed that increased epithelial sodium channel (ENaC) activity in endothelial cells induced by oxidized low-density lipoprotein (ox-LDL) contributes to vasculature dysfunction. Here, we investigated whether ENaC participates in the pathological process of atherosclerosis using LDL receptor-deficient (LDLr-/-) mice. Male C57BL/6 and LDLr-/- mice were fed a normal diet (ND) or high fat diet (HFD) for 10 weeks. Our data show that treatment of LDLr-/- mice with a specific ENaC blocker, benzamil, significantly decreased atherosclerotic lesion formation and expression of matrix metalloproteinase 2 (MMP2) and metalloproteinase 9 (MMP9) in aortic arteries. Furthermore, benzamil ameliorated HFD-induced impairment of aortic endothelium-dependent dilation by reducing expression of proinflammatory cytokines, including TNF-α, IL-1β, and IL-6 and production of adhesion molecules including VCAM-1 and ICAM-1 in both C57BL/6 and LDLr-/- mice fed with HFD. In addition, HFD significantly increased ENaC activity and the levels of serum lipids, including ox-LDL. Our in vitro data further demonstrated that exogenous ox-LDL significantly increased the production of TNF-α, IL-1β, IL-6, VCAM-1 and ICAM-1. This ox-LDL-induced increase in inflammatory cytokines and adhesion molecules was reversed by γ-ENaC silencing or by treatment with the cyclooxygenase-2 (COX-2) antagonist celecoxib. Benzamil inhibited HFD-induced increase in COX-2 expression in aortic tissue in both C57BL/6 and LDLr-/- mice, and γ-ENaC gene silencing attenuated ox-LDL-induced COX-2 expression in HUVECs. These data together suggest that HFD-induced activation of ENaC stimulates inflammatory signaling, thereby contributes to HFD-induced endothelial dysfunction and atherosclerotic lesion formation. Thus, targeting endothelial ENaC may be a promising strategy to halt atherogenesis.
Collapse
Affiliation(s)
- Na Niu
- Departments of Clinical Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150081, China
| | - Xu Yang
- Departments of Clinical Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150081, China
| | - Bao-Long Zhang
- Departments of Clinical Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150081, China
| | - Chen Liang
- Departments of Clinical Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150081, China
| | - Di Zhu
- Departments of Clinical Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150081, China
| | - Qiu-Shi Wang
- Departments of Clinical Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150081, China
| | - Yong-Xu Cai
- Departments of Clinical Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150081, China
| | - Yan-Chao Yang
- Departments of Clinical Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150081, China
| | - Xue Ao
- Departments of Clinical Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150081, China
| | - Ming-Ming Wu
- Departments of Clinical Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150081, China
| | - Zhi-Ren Zhang
- Departments of Clinical Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150081, China.
| |
Collapse
|
16
|
Rapp N, Evenepoel P, Stenvinkel P, Schurgers L. Uremic Toxins and Vascular Calcification-Missing the Forest for All the Trees. Toxins (Basel) 2020; 12:E624. [PMID: 33003628 PMCID: PMC7599869 DOI: 10.3390/toxins12100624] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/23/2022] Open
Abstract
The cardiorenal syndrome relates to the detrimental interplay between the vascular system and the kidney. The uremic milieu induced by reduced kidney function alters the phenotype of vascular smooth muscle cells (VSMC) and promotes vascular calcification, a condition which is strongly linked to cardiovascular morbidity and mortality. Biological mechanisms involved include generation of reactive oxygen species, inflammation and accelerated senescence. A better understanding of the vasotoxic effects of uremic retention molecules may reveal novel avenues to reduce vascular calcification in CKD. The present review aims to present a state of the art on the role of uremic toxins in pathogenesis of vascular calcification. Evidence, so far, is fragmentary and limited with only a few uremic toxins being investigated, often by a single group of investigators. Experimental heterogeneity furthermore hampers comparison. There is a clear need for a concerted action harmonizing and standardizing experimental protocols and combining efforts of basic and clinical researchers to solve the complex puzzle of uremic vascular calcification.
Collapse
MESH Headings
- Animals
- Cardio-Renal Syndrome/metabolism
- Cardio-Renal Syndrome/pathology
- Cardio-Renal Syndrome/physiopathology
- Cardio-Renal Syndrome/therapy
- Humans
- Kidney/metabolism
- Kidney/pathology
- Kidney/physiopathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Prognosis
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/physiopathology
- Renal Insufficiency, Chronic/therapy
- Toxins, Biological/metabolism
- Uremia/metabolism
- Uremia/pathology
- Uremia/physiopathology
- Uremia/therapy
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/physiopathology
- Vascular Calcification/therapy
Collapse
Affiliation(s)
- Nikolas Rapp
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Pieter Evenepoel
- Laboratory of Nephrology, KU Leuven Department of Microbiology and Immunology, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Peter Stenvinkel
- Karolinska Institute, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, 141 86 Stockholm, Sweden;
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
17
|
Wu H, Liu T, Hou H. Knockdown of LINC00657 inhibits ox-LDL-induced endothelial cell injury by regulating miR-30c-5p/Wnt7b/β-catenin. Mol Cell Biochem 2020; 472:145-155. [PMID: 32577947 DOI: 10.1007/s11010-020-03793-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/13/2020] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) play pivotal roles in the pathogenesis, development, and treatment of atherosclerosis (AS). The endothelial cell injury is a feature of AS. However, the role and mechanism of lncRNA LINC00657 in oxidized low-density lipoprotein (ox-LDL)-induced endothelial cell injury remain unclear. The serum samples were collected from 32 AS patients and normal volunteers. Ox-LDL-treated human umbilical vein endothelial cells (HUVEC) were used for the experiments in vitro. The levels of LINC00657, microRNA (miR)-30c-5p and Wnt family member 7B (Wnt7b) were measured by quantitative real-time polymerase chain reaction or western blot. The expression levels of proteins in Wnt7b/β-catenin pathway or endothelial-mesenchymal transition (EndMT) were detected by western blot. The secretion of inflammatory cytokine was examined by enzyme linked immunosorbent assay (ELISA). Cell viability and apoptosis were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide, flow cytometry, and western blot. The target association of miR-30c-5p and LINC00657/Wnt7b was analyzed via dual-luciferase reporter assay and RNA pull-down assay. LINC00657 expression was increased in AS serum and ox-LDL-treated HUVEC cells. LINC00657 knockdown suppressed ox-LDL-induced Wnt7b/β-catenin activation, EndMT, inflammatory response, and apoptosis in HUVEC cells. MiR-30c-5p was bound to LINC00657 and it knockdown reversed the role of LINC00657 inhibition in ox-LDL-induced HUVEC cell injury. MiR-30c-5p targeted Wnt7b to inhibit ox-LDL-induced Wnt7b/β-catenin activation, EndMT, inflammatory response, and apoptosis in HUVEC cells. Silence of LINC00657 repressed ox-LDL-induced injury via inhibiting EndMT, inflammatory response, and apoptosis in HUVEC cells by regulating miR-30c-5p/Wnt7b/β-catenin, indicating a potential target for treatment of AS.
Collapse
Affiliation(s)
- Haojie Wu
- Department of Cardiology, Xi'an No. 1 Hospital, Xi'an, Shaanxi, China
| | - Tingting Liu
- Department of Respiratory Medicine, The Second Medical Center of PLA General Hospital, Beijing, China
| | - Hong Hou
- Department of Cardiology, Xi'an No. 3 Hospital, No. 10, East Section of Fengcheng Third Road, Weiyang District, Xi'an, 710000, Shaanxi, China.
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710000, Shaanxi, China.
| |
Collapse
|
18
|
Wei J, Zhang Y, Li D, Xie T, Li Y, Li J, Chen X, Wei G. Integrating Network Pharmacology and Component Analysis Study on Anti-Atherosclerotic Mechanisms of Total Flavonoids of Engelhardia roxburghiana Leaves in Mice. Chem Biodivers 2020; 17:e1900629. [PMID: 31943763 DOI: 10.1002/cbdv.201900629] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/13/2020] [Indexed: 01/01/2023]
Abstract
Engelhardia roxburghiana Wall. leaves are widely used to develop herbal teas in southeast of China due to medicinal use for diabetes mellitus and hyperlipidemia. Studies have demonstrated that the total flavonoids of E. roxburghiana leaves (TFER) exhibited regulatory effects on blood glucose and lipids. To clarify the active ingredients of TFER and their targets in treating atherosclerosis, the present study integrated chemical analysis, network pharmacology analysis and animal experimental studies. Firstly, high performance liquid chromatography-mass spectrometry/mass spectrometry (HPLC/MS/MS) was utilized to identify components of TFER. Then, active ingredients were screened by oral bioavailability (OB) and drug-likeness (DL) index. Thirdly, network was constructed to predict major targets of active ingredients against atherosclerosis. Finally, to verify parts of predicted signaling, Apoe-/- mice were used to develop atherosclerosis. Atherosclerotic plaques in aorta were evaluated by echocardiography. Then, serum lipids, target genes expressions in thoracic aorta were determined by qRT-PCR and ELISA methods. Chemical analysis revealed 10 components in TFER sample, 7 of which acted as active ingredients, including naringenin, kaempferol, quercetin, isoengeletin, engeletin, astilbin and quercitrin. KEGG pathway analysis highly enriched in some inflammatory signalings, including NF-κB signaling, Toll-like receptor signaling and TNF signaling. The animal studies indicated that TFER reduced atherosclerotic plaques size in aorta and significantly decreased the serum lipids, down-regulated NF-κB signaling by decreasing mRNA level of NF-κB p65 subunit, TNF-α and VCAM-1, as well as IL-1β expressions in thoracic aorta, eventually alleviating atherosclerosis progression, which was in consistent with our prediction.
Collapse
Affiliation(s)
- Jie Wei
- Department of Pharmacology, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, P. R. China
| | - Ying Zhang
- Department of Chemistry, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, P. R. China
| | - Dongmei Li
- Department of Pharmacology, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, P. R. China
| | - Tanggui Xie
- Department of Pharmacology, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, P. R. China
| | - Yanjing Li
- Department of Pharmacology, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, P. R. China
| | - Jia Li
- Department of Chemistry, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, P. R. China
| | - Xiaojun Chen
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Nanning, 530022, P. R. China
| | - Guining Wei
- Department of Pharmacology, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, P. R. China
| |
Collapse
|
19
|
Yuan L, Li Q, Zhang Z, Liu Q, Wang X, Fan L. Tanshinone IIA inhibits the adipogenesis and inflammatory response in ox‐LDL‐challenged human monocyte‐derived macrophages via regulating miR‐130b/WNT5A. J Cell Biochem 2019; 121:1400-1408. [PMID: 31512787 DOI: 10.1002/jcb.29375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/28/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Limei Yuan
- Henan University of Traditional Chinese Medicine Zhengzhou Henan China
- Department of Cardiovascular The Third Affiliated Hospital of Henan University of Chinese Medicine Zhengzhou Henan China
| | - Qinghai Li
- Henan University of Traditional Chinese Medicine Zhengzhou Henan China
| | - Zhiguo Zhang
- Department of Cardiovascular The Third Affiliated Hospital of Henan University of Chinese Medicine Zhengzhou Henan China
| | - Qingle Liu
- Department of Cardiovascular The Third Affiliated Hospital of Henan University of Chinese Medicine Zhengzhou Henan China
| | - Xuechen Wang
- Department of Cardiovascular The Third Affiliated Hospital of Henan University of Chinese Medicine Zhengzhou Henan China
| | - Lihua Fan
- Department of Cardiovascular The Third Affiliated Hospital of Henan University of Chinese Medicine Zhengzhou Henan China
| |
Collapse
|
20
|
Zhuang T, Liu J, Chen X, Zhang L, Pi J, Sun H, Li L, Bauer R, Wang H, Yu Z, Zhang Q, Tomlinson B, Chan P, Zheng X, Morrisey E, Liu Z, Reilly M, Zhang Y. Endothelial Foxp1 Suppresses Atherosclerosis via Modulation of Nlrp3 Inflammasome Activation. Circ Res 2019; 125:590-605. [PMID: 31318658 DOI: 10.1161/circresaha.118.314402] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RATIONALE Endothelial dysfunction results in sustained and chronic vascular inflammation, which is central to atherosclerotic diseases. However, transcriptional regulation of vascular endothelial inflammation has not been well clarified. OBJECTIVE This study aims to explore Foxp (forkhead box P) transcription factor 1 in regulation of endothelial homeostasis, atherogenesis, and its mechanisms. METHODS AND RESULTS To assess the importance of Foxp1 in atherosclerosis, Foxp1 expression was analyzed in human coronary artery and mouse artery, and we observed significant downregulation of Foxp1 in atherosclerotic and atherosusceptible endothelium. Endothelial-specific Foxp1 knockout mice (Foxp1ECKO) were bred onto ApoeKO mice to generate endothelial Foxp1-deletion hyperlipidemic model Foxp1ECKO;ApoeKO, which displayed significant increases in atherosclerotic lesion formation in aortas and aortic roots with enhanced monocyte adhesion, migration, and infiltration into the vascular wall and formation of inflammatory lipid-laden macrophages. In contrast, endothelial-specific Foxp1 overexpression mice Foxp1ECTg;ApoeKO exhibited reduced atherosclerotic lesion formation with less monocyte infiltration. Foxp1 was further identified as a gatekeeper of vessel inflammation by direct regulation of endothelial inflammasome components, including Nlrp3 (NLR [nucleotide-binding and leucine-rich repeat immune receptors] family pyrin domain containing 3), caspase-1, and IL (interleukin)-1β. Moreover, endothelial Foxp1 was found to be regulated by Klf2 (Kruppel-like factor 2). Oscillatory shear stress downregulated Foxp1 expression via repressing Klf2 expression in endothelium, and, therefore, promoted endothelial inflammasome activation, leading to atherosclerotic lesion formation. Simvastatin upregulated the reduced expression of Klf2 and Foxp1 in atherosusceptible vascular endothelium and alleviated vascular inflammation contributing to its inhibitory effect in atherosclerosis. CONCLUSIONS These data are the first in vivo experimental validation of an atheroprotective role of endothelial Klf2 and Foxp1, which reveals a Klf2-Foxp1 transcriptional network in endothelial cells as a novel regulator of endothelial inflammasome activation for atherogenesis, therefore, provides opportunities for therapeutic intervention of atherosclerotic diseases and uncovers a novel atheroprotective mechanism for simvastatin.
Collapse
Affiliation(s)
- Tao Zhuang
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine (T.Z., J.L., X.C., L.Z., H.S., Z.Y., Z.L., Y.Z.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Jie Liu
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine (T.Z., J.L., X.C., L.Z., H.S., Z.Y., Z.L., Y.Z.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Xiaoli Chen
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine (T.Z., J.L., X.C., L.Z., H.S., Z.Y., Z.L., Y.Z.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Lin Zhang
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine (T.Z., J.L., X.C., L.Z., H.S., Z.Y., Z.L., Y.Z.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Jingjiang Pi
- Cardiology (J.P., Q.Z.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Huimin Sun
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine (T.Z., J.L., X.C., L.Z., H.S., Z.Y., Z.L., Y.Z.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Li Li
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (L.L.)
| | - Robert Bauer
- Cardiology Division, Department of Medicine (R.B.), Columbia University, New York, NY
| | - Haikun Wang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China (H.W.)
| | - Zuoren Yu
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine (T.Z., J.L., X.C., L.Z., H.S., Z.Y., Z.L., Y.Z.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Qi Zhang
- Cardiology (J.P., Q.Z.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Brian Tomlinson
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR (B.T.)
| | - Paul Chan
- Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.)
| | - Xiangjian Zheng
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University (X.Z.).,Laboratory of Cardiovascular Signaling, Centenary Institute, and Sydney Medical School, University of Sydney, Sydney, NSW, Australia (X.Z.)
| | - Edward Morrisey
- Department of Cell and Developmental Biology (E.M.), University of Pennsylvania, Philadelphia.,Department of Medicine (E.M.), University of Pennsylvania, Philadelphia.,Penn Cardiovascular Institute (E.M.), University of Pennsylvania, Philadelphia.,Penn Institute for Regenerative Medicine (E.M.), University of Pennsylvania, Philadelphia
| | - Zhongmin Liu
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine (T.Z., J.L., X.C., L.Z., H.S., Z.Y., Z.L., Y.Z.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Muredach Reilly
- Cardiology Division, Department of Medicine and the Irving Institute for Clinical and Translational Research (M.R.), Columbia University, New York, NY
| | - Yuzhen Zhang
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine (T.Z., J.L., X.C., L.Z., H.S., Z.Y., Z.L., Y.Z.), Shanghai East Hospital, Tongji University School of Medicine, China
| |
Collapse
|
21
|
Gu W, Ni Z, Tan YQ, Deng J, Zhang SJ, Lv ZC, Wang XJ, Chen T, Zhang Z, Hu Y, Jing ZC, Xu Q. Adventitial Cell Atlas of wt (Wild Type) and ApoE (Apolipoprotein E)-Deficient Mice Defined by Single-Cell RNA Sequencing. Arterioscler Thromb Vasc Biol 2019; 39:1055-1071. [PMID: 30943771 PMCID: PMC6553510 DOI: 10.1161/atvbaha.119.312399] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022]
Abstract
Objective- Vascular adventitia encompasses progenitors and is getting recognized as the major site of inflammation in early stage of atherosclerosis. However, the cellular atlas of the heterogeneous adventitial cells, the intercellular communication, the cellular response of adventitia to hyperlipidemia, and its contribution to atherosclerosis have been elusive. Approach and Results- Single-cell RNA sequencing was applied to wt (wild type) and ApoE (apolipoprotein E)-deficient aortic adventitia from 12-week-old C57BL/6J mice fed on normal laboratory diet with early stage of atherosclerosis. Unbiased clustering analysis revealed that the landscape of adventitial cells encompassed adventitial mesenchyme cells, immune cells (macrophages, T cells, and B cells), and some types of rare cells, for example, neuron, lymphatic endothelial cells, and innate lymphoid cells. Seurat clustering analysis singled out 6 nonimmune clusters with distinct transcriptomic profiles, in which there predominantly were stem/progenitor cell-like and proinflammatory population (Mesen II). In ApoE-deficient adventitia, resident macrophages were activated and related to increased myeloid cell infiltration in the adventitia. Cell communication analysis further elucidated enhanced interaction between a mesenchyme cluster and inflammatory macrophages in ApoE-deficient adventitia. In vitro transwell assay confirmed the proinflammatory role of SCA1+ (stem cell antigen 1 positive) Mesen II population with increased CCL2 (chemokine [C-C motif] ligand 2) secretion and thus increased capacity to attract immune cells in ApoE-deficient adventitia. Conclusions- Cell atlas defined by single-cell RNA sequencing depicted the heterogeneous cellular landscape of the adventitia and uncovered several types of cell populations. Furthermore, resident cell interaction with immune cells appears crucial at the early stage of atherosclerosis.
Collapse
Affiliation(s)
- Wenduo Gu
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (W.G., Z.N., J.D., Z.Z., Y.H., Q.X.)
| | - Zhichao Ni
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (W.G., Z.N., J.D., Z.Z., Y.H., Q.X.)
| | - Yuan-Qing Tan
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (Y.-Q.T., S.-J.Z., Z.-C.L., X.-J.W., Z.-C.J.)
| | - Jiacheng Deng
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (W.G., Z.N., J.D., Z.Z., Y.H., Q.X.)
| | - Si-Jin Zhang
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (Y.-Q.T., S.-J.Z., Z.-C.L., X.-J.W., Z.-C.J.)
| | - Zi-Chao Lv
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (Y.-Q.T., S.-J.Z., Z.-C.L., X.-J.W., Z.-C.J.)
| | - Xiao-Jian Wang
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (Y.-Q.T., S.-J.Z., Z.-C.L., X.-J.W., Z.-C.J.)
| | - Ting Chen
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University, China (T.C., Q.X.)
| | - Zhongyi Zhang
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (W.G., Z.N., J.D., Z.Z., Y.H., Q.X.)
| | - Yanhua Hu
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (W.G., Z.N., J.D., Z.Z., Y.H., Q.X.)
| | - Zhi-Cheng Jing
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (Y.-Q.T., S.-J.Z., Z.-C.L., X.-J.W., Z.-C.J.)
| | - Qingbo Xu
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (W.G., Z.N., J.D., Z.Z., Y.H., Q.X.)
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University, China (T.C., Q.X.)
| |
Collapse
|