1
|
Antonios L, Chen W, Dilsizian V. The Impact of COVID-19 on Nuclear Medicine Operations Including Cardiovascular Manifestations in the USA. Semin Nucl Med 2022; 52:11-16. [PMID: 34246451 PMCID: PMC8214997 DOI: 10.1053/j.semnuclmed.2021.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The pandemic of coronavirus 2019 disease (COVID-19) not only directly causes high morbidity and mortality of the disease, but also indirectly affects patients with pre-existing medical conditions, particularly cardiovascular diseases, with delayed or deferred outpatient care and procedure including nuclear medicine studies because of concerns about exposure to the virus. In this article, the impact of COVID-19 on hospital operation and nuclear medicine practice in the United States along with recommendations and guidance from major academic organizations are presented. Safe operation of specific nuclear medicine scans, such as lung scintigraphy and nuclear cardiac imaging, are reviewed in the context of balancing benefits to patients against the risk of exacerbating the spread of the virus. Thoughtful reintroduction of nuclear medicine services are discussed based on ethical considerations that maximize benefits to those who are likely to benefit most, taking into consideration baseline health inequities, and ensuring that all decisions reflect best available evidence with transparent communication. Finally, potential correlation between decreased volume of nuclear cardiac studies performed during the pandemic and corresponding increased deaths from ischemic and hypertensive cardiac disease is discussed.
Collapse
Affiliation(s)
- Lara Antonios
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Wengen Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
2
|
Liu Q, Song J, Lu D, Geng J, Jiang Z, Wang K, Zhang B, Shan Q. Effects of renal denervation on monocrotaline induced pulmonary remodeling. Oncotarget 2018; 8:46846-46855. [PMID: 28187460 PMCID: PMC5564527 DOI: 10.18632/oncotarget.15154] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/24/2017] [Indexed: 12/18/2022] Open
Abstract
Pulmonary artery hypertension (PAH) is a rapidly progressive disorder, which leads to right heart failure and even death. Overactivity of the renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system accounts for the development and progression of PAH. The role of renal denervation (RDN) in different periods of PAH has not been fully elucidated. A single intraperitoneal injection of monocrotaline (MCT, 60 mg/kg) was used to induce pulmonary remodeling in male Sprague Dawley rats (n = 40). After 24-hour of MCT administration, a subset of rats underwent RDN (RDN24h, n = 10); after 2-week of MCT injection, another ten rats received RDN treatment (RDN2w, n = 10) and the left 20 rats were divided to MCT group with sham RDN operation (MCT, n = 20). Eight rats in Control group received intraperitoneal injection of normal saline (60 mg/kg) once and sham RDN surgery. After 35 days, tissue and blood samples were collected. Histological analysis demonstrated that the collagen volume fraction of right ventricle, lung tissue and pulmonary vessel reduced significantly in RDN24h group but not in the RDN2w group, compared with MCT group. Moreover, the earlier RDN treatment significantly decreased SNS activity and blunted RAAS activation. Importantly, RDN treatment significantly improved the survival rate. In summary, earlier RDN treatment could attenuate cardio-pulmonary fibrosis and therefore might be a promising approach to prevent the development of PAH.
Collapse
Affiliation(s)
- Qian Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiyang Song
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, China
| | - Dasheng Lu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Geng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhixin Jiang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qijun Shan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Liu Y, Xu H, Geng Y, Xu D, Zhang L, Yang Y, Wei Z, Zhang B, Li S, Gao X, Wang R, Zhang X, Brann D, Yang F. Dibutyryl-cAMP attenuates pulmonary fibrosis by blocking myofibroblast differentiation via PKA/CREB/CBP signaling in rats with silicosis. Respir Res 2017; 18:38. [PMID: 28222740 PMCID: PMC5320641 DOI: 10.1186/s12931-017-0523-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/16/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Myofibroblasts play a major role in the synthesis of extracellular matrix (ECM) and the stimulation of these cells is thought to play an important role in the development of silicosis. The present study was undertaken to investigate the anti-fibrotic effects of dibutyryl-cAMP (db-cAMP) on rats induced by silica. METHODS A HOPE MED 8050 exposure control apparatus was used to create the silicosis model. Rats were randomly divided into 4 groups: 1)controls for 16 w; 2)silicosis for 16 w; 3)db-cAMP pre-treatment; 4) db-cAMP post-treatment. Rat pulmonary fibroblasts were cultured in vitro and divided into 4 groups as follows: 1) controls; 2) 10-7mol/L angiotensin II (Ang II); 3) Ang II +10-4 mol/L db-cAMP; and 4) Ang II + db-cAMP+ 10-6 mol/L H89. Hematoxylin-eosin (HE), Van Gieson staining and immunohistochemistry (IHC) were performed to observe the histomorphology of lung tissue. The levels of cAMP were detected by enzyme immunoassay. Double-labeling for α-SMA with Gαi3, protein kinase A (PKA), phosphorylated cAMP-response element-binding protein (p-CREB), and p-Smad2/3 was identified by immunofluorescence staining. Protein levels were detected by Western blot analysis. The interaction between CREB-binding protein (CBP) and Smad2/3 and p-CREB were measured by co-immunoprecipitation (Co-IP). RESULTS Db-cAMP treatment reduced the number and size of silicosis nodules, inhibited myofibroblast differentiation, and extracellular matrix deposition in vitro and in vivo. In addition, db-cAMP regulated Gαs protein and inhibited expression of Gαi protein, which increased endogenous cAMP. Db-cAMP increased phosphorylated cAMP-response element-binding protein (p-CREB) via protein kinase A (PKA) signaling, and decreased nuclear p-Smad2/3 binding with CREB binding protein (CBP), which reduced activation of p-Smads in fibroblasts induced by Ang II. CONCLUSIONS This study showed an anti-silicotic effect of db-cAMP that was mediated via PKA/p-CREB/CBP signaling. Furthermore, the findings offer novel insight into the potential use of cAMP signaling for therapeutic strategies to treat silicosis.
Collapse
Affiliation(s)
- Yan Liu
- Basic Medical College, Hebei Medical University, No. 361 Zhongshan Road, Shijiazhuang city, Hebei province, China
| | - Hong Xu
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei, 063009, China
| | - Yucong Geng
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei, 063009, China
| | - Dingjie Xu
- Traditional Chinese Medicine College, North China University of Science and Technology, Tangshan, Hebei, 063009, China
| | - Lijuan Zhang
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei, 063009, China
| | - Yi Yang
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei, 063009, China
| | - Zhongqiu Wei
- Basic Medical College, North China University of Science and Technology, Tangshan, Hebei, 063009, China
| | - Bonan Zhang
- Basic Medical College, North China University of Science and Technology, Tangshan, Hebei, 063009, China
| | - Shifeng Li
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei, 063009, China
| | - Xuemin Gao
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei, 063009, China
| | - Ruimin Wang
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei, 063009, China
| | - Xianghong Zhang
- Basic Medical College, Hebei Medical University, No. 361 Zhongshan Road, Shijiazhuang city, Hebei province, China
| | - Darrell Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Fang Yang
- Basic Medical College, Hebei Medical University, No. 361 Zhongshan Road, Shijiazhuang city, Hebei province, China.
| |
Collapse
|
4
|
Romaní-Pérez M, Outeiriño-Iglesias V, Moya CM, Santisteban P, González-Matías LC, Vigo E, Mallo F. Activation of the GLP-1 Receptor by Liraglutide Increases ACE2 Expression, Reversing Right Ventricle Hypertrophy, and Improving the Production of SP-A and SP-B in the Lungs of Type 1 Diabetes Rats. Endocrinology 2015. [PMID: 26196539 DOI: 10.1210/en.2014-1685] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetes alters microvascular function in the vascular beds of organs, including the lungs. Cardiovascular complications of pulmonary vascular affectation may be a consequence of the overactivation of the vasoconstrictive and proliferative components of the renin-angiotensin system. We previously reported that pulmonary physiology and surfactant production is improved by the glucagon-like peptide 1 receptor (GLP-1R) agonist liraglutide (LIR) in a rat model of lung hypoplasia. Because we hypothesized that streptozotocin-induced diabetes rats would show deficiencies in lung function, including surfactant proteins, and develop an imbalance of the renin-angiotensin system in the lungs. This effect would in turn be prevented by long-acting agonists of the GLP-1R, such as LIR. The induction of diabetes reduced the surfactant protein A and B in the lungs and caused the vasoconstrictor component of the renin-angiotensin system to predominate, which in turn increased angiotensin II levels, and ultimately being associated with right ventricle hypertrophy. LIR restored surfactant protein levels and reversed the imbalance in the renin-angiotensin system in this type 1 diabetes mellitus rat model. Moreover, LIR provoked a strong increase in angiotensin-converting enzyme 2 expression in the lungs of both diabetic and control rats, and in the circulating angiotensin(1-7) in diabetic animals. These effects prompted complete reversion of right ventricle hypertrophy. The consequences of LIR administration were independent of glycemic control and of glucocorticoids, and they involved NK2 homeobox 1 signaling. This study demonstrates by first time that GLP-1R agonists, such as LIR, might improve the cardiopulmonary complications associated with diabetes.
Collapse
Affiliation(s)
- Marina Romaní-Pérez
- Laboratory of Endocrinology (M.R.-P., V.O.-I., L.C.G.-M., E.V., F.M.), Centre for Biomedical Research (CINBIO), University of Vigo, Faculty of Biology, E-36310 Vigo, Spain; Institute for Biomedical Research of Vigo (IBIV) (M.R.-P., V.O.-I., L.C.G.-M., E.V., F.M.), University of Vigo/Sergas, E36310, Vigo, Spain; and Institute Biomedical Research Alberto Sols (C.M.M., P.S.), Spanish Council of Research, Universidad Autónoma de Madrid, Madrid E28029, Spain
| | - Verónica Outeiriño-Iglesias
- Laboratory of Endocrinology (M.R.-P., V.O.-I., L.C.G.-M., E.V., F.M.), Centre for Biomedical Research (CINBIO), University of Vigo, Faculty of Biology, E-36310 Vigo, Spain; Institute for Biomedical Research of Vigo (IBIV) (M.R.-P., V.O.-I., L.C.G.-M., E.V., F.M.), University of Vigo/Sergas, E36310, Vigo, Spain; and Institute Biomedical Research Alberto Sols (C.M.M., P.S.), Spanish Council of Research, Universidad Autónoma de Madrid, Madrid E28029, Spain
| | - Christian M Moya
- Laboratory of Endocrinology (M.R.-P., V.O.-I., L.C.G.-M., E.V., F.M.), Centre for Biomedical Research (CINBIO), University of Vigo, Faculty of Biology, E-36310 Vigo, Spain; Institute for Biomedical Research of Vigo (IBIV) (M.R.-P., V.O.-I., L.C.G.-M., E.V., F.M.), University of Vigo/Sergas, E36310, Vigo, Spain; and Institute Biomedical Research Alberto Sols (C.M.M., P.S.), Spanish Council of Research, Universidad Autónoma de Madrid, Madrid E28029, Spain
| | - Pilar Santisteban
- Laboratory of Endocrinology (M.R.-P., V.O.-I., L.C.G.-M., E.V., F.M.), Centre for Biomedical Research (CINBIO), University of Vigo, Faculty of Biology, E-36310 Vigo, Spain; Institute for Biomedical Research of Vigo (IBIV) (M.R.-P., V.O.-I., L.C.G.-M., E.V., F.M.), University of Vigo/Sergas, E36310, Vigo, Spain; and Institute Biomedical Research Alberto Sols (C.M.M., P.S.), Spanish Council of Research, Universidad Autónoma de Madrid, Madrid E28029, Spain
| | - Lucas C González-Matías
- Laboratory of Endocrinology (M.R.-P., V.O.-I., L.C.G.-M., E.V., F.M.), Centre for Biomedical Research (CINBIO), University of Vigo, Faculty of Biology, E-36310 Vigo, Spain; Institute for Biomedical Research of Vigo (IBIV) (M.R.-P., V.O.-I., L.C.G.-M., E.V., F.M.), University of Vigo/Sergas, E36310, Vigo, Spain; and Institute Biomedical Research Alberto Sols (C.M.M., P.S.), Spanish Council of Research, Universidad Autónoma de Madrid, Madrid E28029, Spain
| | - Eva Vigo
- Laboratory of Endocrinology (M.R.-P., V.O.-I., L.C.G.-M., E.V., F.M.), Centre for Biomedical Research (CINBIO), University of Vigo, Faculty of Biology, E-36310 Vigo, Spain; Institute for Biomedical Research of Vigo (IBIV) (M.R.-P., V.O.-I., L.C.G.-M., E.V., F.M.), University of Vigo/Sergas, E36310, Vigo, Spain; and Institute Biomedical Research Alberto Sols (C.M.M., P.S.), Spanish Council of Research, Universidad Autónoma de Madrid, Madrid E28029, Spain
| | - Federico Mallo
- Laboratory of Endocrinology (M.R.-P., V.O.-I., L.C.G.-M., E.V., F.M.), Centre for Biomedical Research (CINBIO), University of Vigo, Faculty of Biology, E-36310 Vigo, Spain; Institute for Biomedical Research of Vigo (IBIV) (M.R.-P., V.O.-I., L.C.G.-M., E.V., F.M.), University of Vigo/Sergas, E36310, Vigo, Spain; and Institute Biomedical Research Alberto Sols (C.M.M., P.S.), Spanish Council of Research, Universidad Autónoma de Madrid, Madrid E28029, Spain
| |
Collapse
|
5
|
Kruzliak P, Hare DL, Zvonicek V, Klimas J, Zulli A. Simvastatin impairs the induction of pulmonary fibrosis caused by a western style diet: a preliminary study. J Cell Mol Med 2015; 19:2647-54. [PMID: 26304628 PMCID: PMC4627569 DOI: 10.1111/jcmm.12637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/20/2015] [Indexed: 01/05/2023] Open
Abstract
The role of an atherogenic diet in causing pulmonary fibrosis has received little attention and simvastatin has been shown to reduce pulmonary fibrosis in animal models. To determine if an atherogenic diet can induce pulmonary fibrosis and whether simvastatin treatment is beneficial by up-regulating heat shock protein 70 and 90. New Zealand white rabbits (n = 15) were divided: Group 1 (control); Group 2 (MC) received a normal rabbit diet with 1% methionine plus 0.5% cholesterol (atherogenic diet). Group 3 received the same diet as the MC group plus 5 mg/kg/day simvastatin orally (MCS). After 4 weeks, the lungs were collected and analysed. Picrosirus red staining of lung interstitial collagen content showed that the atherogenic diet increased fibrosis 2.9-fold (P < 0.05), bronchiole adventitial collagen was increased 2.3-fold (P < 0.05) and bronchiole epithelium was increased 34-fold (P < 0.05), and simvastatin treatment severely reduced this effect (P < 0.05). Western blot analysis showed that the atherogenic diet significantly reduced lung Hsp70 protein by 22% (P < 0.05) and Hsp90 protein by 18% (P < 0.05) and simvastatin treatment did not affect this result. However, aortic hyper-responsiveness to vasoconstrictors (angiotensin II and phenylephrine) were markedly reduced by simvastatin treatment. We report that an atherogenic diet stimulates pulmonary fibrosis and reduces lung Hsp70/Hsp90 protein concentration. Simvastatin impairs this by mechanisms unrelated to Hsp70/Hsp90, but possibly a reduction in angiotensin II receptor or alpha adrenergic receptor pathways. These results could have implications in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Peter Kruzliak
- International Clinical Research Center, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - David L Hare
- Departments of Cardiology and Medicine, University of Melbourne, Austin Health, Melbourne, VIC, Australia
| | - Vaclav Zvonicek
- International Clinical Research Center, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic.,Department of Anesthesiology and Intensive Care Medicine, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Anthony Zulli
- Department of Anesthesiology and Intensive Care Medicine, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic.,Centre for Chronic Disease Prevention & Management (CCDPM), Western CHRE, College of Health and Biomedicine, Victoria University, St Albans, VIC, Australia
| |
Collapse
|
6
|
Shenoy V, Ferreira AJ, Qi Y, Fraga-Silva RA, Díez-Freire C, Dooies A, Jun JY, Sriramula S, Mariappan N, Pourang D, Venugopal CS, Francis J, Reudelhuber T, Santos RA, Patel JM, Raizada MK, Katovich MJ. The angiotensin-converting enzyme 2/angiogenesis-(1-7)/Mas axis confers cardiopulmonary protection against lung fibrosis and pulmonary hypertension. Am J Respir Crit Care Med 2010; 182:1065-72. [PMID: 20581171 DOI: 10.1164/rccm.200912-1840oc] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
RATIONALE An activated vasoconstrictive, proliferative, and fibrotic axis of the renin angiotensin system (angiotensin-converting enzyme [ACE]/angiotensin [Ang]II/AngII type 1 receptor) has been implicated in the pathophysiology of pulmonary fibrosis (PF) and pulmonary hypertension (PH). The recent discovery of a counterregulatory axis of the renin angiotensin system composed of ACE2/Ang-(1-7)/Mas has led us to examine the role of this vasoprotective axis on such disorders. OBJECTIVES We hypothesized that Ang-(1-7) treatment would exert protective effects against PF and PH. METHODS Lentiviral packaged Ang-(1-7) fusion gene or ACE2 cDNA was intratracheally administered into the lungs of male Sprague Dawley rats. Two weeks after gene transfer, animals received bleomycin (2.5 mg/kg). In a subsequent study, animals were administered monocrotaline (MCT, 50 mg/kg). MEASUREMENTS AND MAIN RESULTS In the PF study, bleomycin administration resulted in a significant increase in right ventricular systolic pressure, which was associated with the development of right ventricular hypertrophy. The lungs of these animals also exhibited excessive collagen deposition, decreased expression of ACE and ACE2, increased mRNA levels for transforming growth factor β and other proinflammatory cytokines, and increased protein levels of the AT₁R. Overexpression of Ang-(1-7) significantly prevented all the above-mentioned pathophysiological conditions. Similar protective effects were also obtained with ACE2 overexpression. In the PH study, rats injected with MCT developed elevated right ventricular systolic pressure, right ventricular hypertrophy, right ventricular fibrosis, and pulmonary vascular remodeling, all of which were attenuated by Ang-(1-7) overexpression. Blockade of the Mas receptor abolished the beneficial effects of Ang-(1-7) against MCT-induced PH. CONCLUSIONS Our observations demonstrate a cardiopulmonary protective role for the ACE2/Ang-(1-7)/Mas axis in the treatment of lung disorders.
Collapse
Affiliation(s)
- Vinayak Shenoy
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kassiri Z, Defamie V, Hariri M, Oudit GY, Anthwal S, Dawood F, Liu P, Khokha R. Simultaneous transforming growth factor beta-tumor necrosis factor activation and cross-talk cause aberrant remodeling response and myocardial fibrosis in Timp3-deficient heart. J Biol Chem 2009; 284:29893-904. [PMID: 19625257 DOI: 10.1074/jbc.m109.028449] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The pleiotropic cytokines, transforming growth factor beta1 (TGFbeta1), and tumor necrosis factor (TNF) play critical roles in tissue homeostasis in response to injury and are implicated in multiple human diseases and cancer. We reported that the loss of Timp3 (tissue inhibitor of metalloproteinase 3) leads to abnormal TNF signaling and cardiovascular function. Here we show that parallel deregulation of TGFbeta1 and TNF signaling in Timp3(-/-) mice amplifies their cross-talk at the onset of cardiac response to mechanical stress (pressure overload), resulting in fibrosis and early heart failure. Microarray analysis showed a distinct gene expression profile in Timp3(-/-) hearts, highlighting activation of TGFbeta1 signaling as a potential mechanism underlying fibrosis. Neonatal cardiomyocyte-cardiofibroblast co-cultures were established to measure fibrogenic response to agonists known to be induced following mechanical stress in vivo. A stronger response occurred in neonatal Timp3(-/-) co-cultures, as determined by increased Smad signaling and collagen expression, due to increased TNF processing and precocious proteolytic maturation of TGFbeta1 to its active form. The relationship between TGFbeta1 and TNF was dissected using genetic and pharmacological manipulations. Timp3(-/-)/Tnf(-/-) mice had lower TGFbeta1 than Timp3(-/-), and anti-TGFbeta1 antibody (1D11) negated the abnormal TNF response, indicating their reciprocal stimulatory effects, with each manipulation abolishing fibrosis and improving heart function. Thus, TIMP3 is a common innate regulator of TGFbeta1 and TNF in tissue response to injury. The matrix-bound TIMP3 balances the anti-inflammatory and proinflammatory processes toward constructive tissue remodeling.
Collapse
Affiliation(s)
- Zamaneh Kassiri
- Ontario Cancer Institute, University of Toronto, Toronto, Ontario M5G2M9, Canada
| | | | | | | | | | | | | | | |
Collapse
|