1
|
Kariya T, Washio T, Okada JI, Nakagawa M, Watanabe M, Kadooka Y, Sano S, Nagai R, Sugiura S, Hisada T. Personalized Perioperative Multi-scale, Multi-physics Heart Simulation of Double Outlet Right Ventricle. Ann Biomed Eng 2020; 48:1740-1750. [PMID: 32152800 DOI: 10.1007/s10439-020-02488-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
Abstract
For treatment of complex congenital heart disease, computer simulation using a three-dimensional heart model may help to improve outcomes by enabling detailed preoperative evaluations. However, no highly integrated model that accurately reproduces a patient's pathophysiology, which is required for this simulation has been reported. We modelled a case of complex congenital heart disease, double outlet right ventricle with ventricular septal defect and atrial septal defect. From preoperative computed tomography images, finite element meshes of the heart and torso were created, and cell model of cardiac electrophysiology and sarcomere dynamics was implemented. The parameter values of the heart model were adjusted to reproduce the patient's electrocardiogram and haemodynamics recorded preoperatively. Two options of in silico surgery were performed using this heart model, and the resulting changes in performance were examined. Preoperative and postoperative simulations showed good agreement with clinical records including haemodynamics and measured oxyhaemoglobin saturations. The use of a detailed sarcomere model also enabled comparison of energetic efficiency between the two surgical options. A novel in silico model of congenital heart disease that integrates molecular models of cardiac function successfully reproduces the observed pathophysiology. The simulation of postoperative state by in silico surgeries can help guide clinical decision-making.
Collapse
Affiliation(s)
- Taro Kariya
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Takumi Washio
- UT-Heart Inc, The University of Tokyo, Tokyo, Kashiwa-no-ha Campus Station Satellite #304, 178-4-4 Wakashiba, Kashiwa, Chiba, 277-0871, Japan
| | - Jun-Ichi Okada
- UT-Heart Inc, The University of Tokyo, Tokyo, Kashiwa-no-ha Campus Station Satellite #304, 178-4-4 Wakashiba, Kashiwa, Chiba, 277-0871, Japan
| | - Machiko Nakagawa
- Next-Generation Healthcare Innovation Center, Fujitsu Ltd., Tokyo, Japan
| | - Masahiro Watanabe
- Next-Generation Healthcare Innovation Center, Fujitsu Ltd., Tokyo, Japan
| | - Yoshimasa Kadooka
- Next-Generation Healthcare Innovation Center, Fujitsu Ltd., Tokyo, Japan
| | - Shunji Sano
- Department of Cardiac Surgery, Okayama University, Okayama, Japan
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ryozo Nagai
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
- Jichi Medical University, Tochigi, Japan
| | - Seiryo Sugiura
- UT-Heart Inc, The University of Tokyo, Tokyo, Kashiwa-no-ha Campus Station Satellite #304, 178-4-4 Wakashiba, Kashiwa, Chiba, 277-0871, Japan.
| | - Toshiaki Hisada
- UT-Heart Inc, The University of Tokyo, Tokyo, Kashiwa-no-ha Campus Station Satellite #304, 178-4-4 Wakashiba, Kashiwa, Chiba, 277-0871, Japan
| |
Collapse
|
3
|
Shinbane JS, Saxon LA. Virtual medicine: Utilization of the advanced cardiac imaging patient avatar for procedural planning and facilitation. J Cardiovasc Comput Tomogr 2017; 12:16-27. [PMID: 29198733 DOI: 10.1016/j.jcct.2017.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/08/2017] [Accepted: 11/12/2017] [Indexed: 01/17/2023]
Abstract
Advances in imaging technology have led to a paradigm shift from planning of cardiovascular procedures and surgeries requiring the actual patient in a "brick and mortar" hospital to utilization of the digitalized patient in the virtual hospital. Cardiovascular computed tomographic angiography (CCTA) and cardiovascular magnetic resonance (CMR) digitalized 3-D patient representation of individual patient anatomy and physiology serves as an avatar allowing for virtual delineation of the most optimal approaches to cardiovascular procedures and surgeries prior to actual hospitalization. Pre-hospitalization reconstruction and analysis of anatomy and pathophysiology previously only accessible during the actual procedure could potentially limit the intrinsic risks related to time in the operating room, cardiac procedural laboratory and overall hospital environment. Although applications are specific to areas of cardiovascular specialty focus, there are unifying themes related to the utilization of technologies. The virtual patient avatar computer can also be used for procedural planning, computational modeling of anatomy, simulation of predicted therapeutic result, printing of 3-D models, and augmentation of real time procedural performance. Examples of the above techniques are at various stages of development for application to the spectrum of cardiovascular disease processes, including percutaneous, surgical and hybrid minimally invasive interventions. A multidisciplinary approach within medicine and engineering is necessary for creation of robust algorithms for maximal utilization of the virtual patient avatar in the digital medical center. Utilization of the virtual advanced cardiac imaging patient avatar will play an important role in the virtual health care system. Although there has been a rapid proliferation of early data, advanced imaging applications require further assessment and validation of accuracy, reproducibility, standardization, safety, efficacy, quality, cost effectiveness, and overall value to medical care.
Collapse
Affiliation(s)
- Jerold S Shinbane
- Division of Cardiovascular Medicine/USC Center for Body Computing, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States.
| | - Leslie A Saxon
- Division of Cardiovascular Medicine/USC Center for Body Computing, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
4
|
Chiamvimonvat N, Chen-Izu Y, Clancy CE, Deschenes I, Dobrev D, Heijman J, Izu L, Qu Z, Ripplinger CM, Vandenberg JI, Weiss JN, Koren G, Banyasz T, Grandi E, Sanguinetti MC, Bers DM, Nerbonne JM. Potassium currents in the heart: functional roles in repolarization, arrhythmia and therapeutics. J Physiol 2017; 595:2229-2252. [PMID: 27808412 DOI: 10.1113/jp272883] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/11/2016] [Indexed: 12/19/2022] Open
Abstract
This is the second of the two White Papers from the fourth UC Davis Cardiovascular Symposium Systems Approach to Understanding Cardiac Excitation-Contraction Coupling and Arrhythmias (3-4 March 2016), a biennial event that brings together leading experts in different fields of cardiovascular research. The theme of the 2016 symposium was 'K+ channels and regulation', and the objectives of the conference were severalfold: (1) to identify current knowledge gaps; (2) to understand what may go wrong in the diseased heart and why; (3) to identify possible novel therapeutic targets; and (4) to further the development of systems biology approaches to decipher the molecular mechanisms and treatment of cardiac arrhythmias. The sessions of the Symposium focusing on the functional roles of the cardiac K+ channel in health and disease, as well as K+ channels as therapeutic targets, were contributed by Ye Chen-Izu, Gideon Koren, James Weiss, David Paterson, David Christini, Dobromir Dobrev, Jordi Heijman, Thomas O'Hara, Crystal Ripplinger, Zhilin Qu, Jamie Vandenberg, Colleen Clancy, Isabelle Deschenes, Leighton Izu, Tamas Banyasz, Andras Varro, Heike Wulff, Eleonora Grandi, Michael Sanguinetti, Donald Bers, Jeanne Nerbonne and Nipavan Chiamvimonvat as speakers and panel discussants. This article summarizes state-of-the-art knowledge and controversies on the functional roles of cardiac K+ channels in normal and diseased heart. We endeavour to integrate current knowledge at multiple scales, from the single cell to the whole organ levels, and from both experimental and computational studies.
Collapse
Affiliation(s)
- Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, Genome and Biomedical Science Facility, Rm 6315, Davis, CA, 95616, USA.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, 95655, USA
| | - Ye Chen-Izu
- Department of Internal Medicine, University of California, Davis, Genome and Biomedical Science Facility, Rm 6315, Davis, CA, 95616, USA.,Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA.,Department of Biomedical Engineering, University of California, Davis, Genome and Biomedical Science Facility, Rm 2303, Davis, CA, 95616, USA
| | - Colleen E Clancy
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Isabelle Deschenes
- Department of Physiology and Biophysics, and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44109, USA.,Heart and Vascular Research Center, MetroHealth Medical Center, Cleveland, OH, 44109, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Leighton Izu
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Zhilin Qu
- Division of Cardiology, Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, 3645 MRL, Los Angeles, CA, 90095, USA
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia
| | - James N Weiss
- Division of Cardiology, Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, 3645 MRL, Los Angeles, CA, 90095, USA
| | - Gideon Koren
- Cardiovascular Research Center, Rhode Island Hospital and the Cardiovascular Institute, The Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Tamas Banyasz
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Michael C Sanguinetti
- Department of Internal Medicine, University of Utah, Nora Eccles Harrison Cardiovascular Research & Training Institute, Salt Lake City, UT, 84112, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Jeanne M Nerbonne
- Departments of Developmental Biology and Internal Medicine, Cardiovascular Division, Washington University Medical School, St Louis, MO, 63110, USA
| |
Collapse
|
6
|
Biglino G, Cosentino D, Steeden JA, De Nova L, Castelli M, Ntsinjana H, Pennati G, Taylor AM, Schievano S. Using 4D Cardiovascular Magnetic Resonance Imaging to Validate Computational Fluid Dynamics: A Case Study. Front Pediatr 2015; 3:107. [PMID: 26697416 PMCID: PMC4677094 DOI: 10.3389/fped.2015.00107] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 11/25/2015] [Indexed: 11/30/2022] Open
Abstract
Computational fluid dynamics (CFD) can have a complementary predictive role alongside the exquisite visualization capabilities of 4D cardiovascular magnetic resonance (CMR) imaging. In order to exploit these capabilities (e.g., for decision-making), it is necessary to validate computational models against real world data. In this study, we sought to acquire 4D CMR flow data in a controllable, experimental setup and use these data to validate a corresponding computational model. We applied this paradigm to a case of congenital heart disease, namely, transposition of the great arteries (TGA) repaired with arterial switch operation. For this purpose, a mock circulatory loop compatible with the CMR environment was constructed and two detailed aortic 3D models (i.e., one TGA case and one normal aortic anatomy) were tested under realistic hemodynamic conditions, acquiring 4D CMR flow. The same 3D domains were used for multi-scale CFD simulations, whereby the remainder of the mock circulatory system was appropriately summarized with a lumped parameter network. Boundary conditions of the simulations mirrored those measured in vitro. Results showed a very good quantitative agreement between experimental and computational models in terms of pressure (overall maximum % error = 4.4% aortic pressure in the control anatomy) and flow distribution data (overall maximum % error = 3.6% at the subclavian artery outlet of the TGA model). Very good qualitative agreement could also be appreciated in terms of streamlines, throughout the cardiac cycle. Additionally, velocity vectors in the ascending aorta revealed less symmetrical flow in the TGA model, which also exhibited higher wall shear stress in the anterior ascending aorta.
Collapse
Affiliation(s)
- Giovanni Biglino
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, Great Ormond Street Hospital for Children, NHS Foundation Trust , London , UK
| | - Daria Cosentino
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, Great Ormond Street Hospital for Children, NHS Foundation Trust , London , UK
| | - Jennifer A Steeden
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, Great Ormond Street Hospital for Children, NHS Foundation Trust , London , UK
| | - Lorenzo De Nova
- Laboratory of Biological Structures Mechanics (LAbS), Politecnico di Milano , Milan , Italy
| | - Matteo Castelli
- Laboratory of Biological Structures Mechanics (LAbS), Politecnico di Milano , Milan , Italy
| | - Hopewell Ntsinjana
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, Great Ormond Street Hospital for Children, NHS Foundation Trust , London , UK
| | - Giancarlo Pennati
- Laboratory of Biological Structures Mechanics (LAbS), Politecnico di Milano , Milan , Italy
| | - Andrew M Taylor
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, Great Ormond Street Hospital for Children, NHS Foundation Trust , London , UK
| | - Silvia Schievano
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, Great Ormond Street Hospital for Children, NHS Foundation Trust , London , UK
| |
Collapse
|