1
|
Yang W, Wang H, Guo Q, Xu X, Guo T, Sun L. Roles of TRPV4 in Regulating Circulating Angiogenic Cells to Promote Coronary Microvascular Regeneration. J Cardiovasc Transl Res 2022; 16:414-426. [PMID: 36103035 DOI: 10.1007/s12265-022-10305-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022]
Abstract
To clarify the mechanisms underlying TRPV4 regulating angiogenesis by enhancing the activity of CACs, we detected the angiogenesis ability of HUVEC co-cultured with CACs, the effects of ILK on TRPV4 expression and CACs activity, and the impacts of TRPV4 agonist or inhibitor on cardio-protection of AMI rats with or without CAC transplantation. ILK overexpression or TRPV4 agonist promoted the angiogenesis in HUVEC co-cultured with CACs. ILK overexpression or activation upregulated TRPV4 expression in CACs, while TRPV4 agonist stimulation also regulated ILK expression. TRPV4 agonist effectively improved the myocardial function of AMI rats. Moreover, this effect could be strengthened when combined with CAC transplantation, as CAC transplantation dramatically upregulated the expression of ILK and TRPV4 in heart tissues of AMI rats. Thus, the application of TRPV4 agonist may maintain the activity of CACs to promote angiogenesis and microcirculation reconstruction in the area of myocardial infarction and substantially improve the therapeutic effect.
Collapse
Affiliation(s)
- Wenhui Yang
- Department of Cardiology, Fuwai Yunnan Cardiovascular Hospital, Kunming, China
| | - Haizhen Wang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Qiuzhe Guo
- Department of Cardiology, Fuwai Yunnan Cardiovascular Hospital, Kunming, China
| | - Xiaocui Xu
- Kunming Medical University, Kunming, China
| | - Tao Guo
- Department of Cardiology, Fuwai Yunnan Cardiovascular Hospital, Kunming, China.
| | - Lin Sun
- Department of Cardiology, Fuwai Yunnan Cardiovascular Hospital, Kunming, China.
| |
Collapse
|
2
|
Ren P, Zhang M, Dai S. Therapeutic effects of coronary granulocyte colony-stimulating factor on rats with chronic ischemic heart disease. Open Life Sci 2020; 15:742-752. [PMID: 33817262 PMCID: PMC7747518 DOI: 10.1515/biol-2020-0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022] Open
Abstract
Background The aim of this study was to evaluate the therapeutic effects of coronary granulocyte colony-stimulating factor (G-CSF) on rats with chronic ischemic heart disease (CIHD). Methods Thirty healthy rats were randomly divided into control, subcutaneous and intracoronary G-CSF injection groups (n = 10) after the CIHD model was established. Left ventricular ejection fraction (LVEF), myocardial injury area, myocardial perfusion area and viable myocardium were observed by coronary angiography, dual-isotopic myocardial imaging and first-pass delayed myocardial perfusion magnetic resonance imaging (MRI) before modeling as well as 2 and 4 weeks after surgery. Results The peak times of peripheral blood and subcutaneous G-CSF levels were 3 and 5 days after mobilization, respectively. The peripheral blood CD34+/CD133+ cell ratio of subcutaneous or intracoronary G-CSF injection group significantly exceeded that of the control group (P < 0.05). The distal stenosis degrees of target lesions in subcutaneous and intracoronary G-CSF injection groups were significantly lower than that of the control group (P < 0.05). Compared with the situation before mobilization, LVEF was significantly improved after 2 weeks in intracoronary and subcutaneous G-CSF injection groups (P < 0.01). Their infarcted myocardial areas were reduced, the left ventricular remodeling was relieved, the percentage of viable myocardium was increased, angiogenesis was promoted and cardiomyocyte apoptosis was inhibited. Conclusion Intracoronary G-CSF injection is safe and effective as subcutaneous injection, improving the cardiac function of CIHD rats.
Collapse
Affiliation(s)
- Pengcheng Ren
- Department of Cardiology, Chongqing Dazu District People’s Hospital, Chongqing, 402360, People's Republic of China
| | - Ming Zhang
- Department of Cardiology, Chongqing Dazu District People’s Hospital, Chongqing, 402360, People's Republic of China
| | - Shuren Dai
- Department of Cardiology, Chongqing Dazu District People’s Hospital, Chongqing, 402360, People's Republic of China
| |
Collapse
|
3
|
Fanaroff AC, Morrow V, Krucoff MW, Seltzer JH, Perin EC, Taylor DA, Miller LW, Zeiher AM, Fernández-Avilés F, Losordo DW, Henry TD, Povsic TJ. A Path Forward for Regenerative Medicine. Circ Res 2019; 123:495-505. [PMID: 30355250 DOI: 10.1161/circresaha.118.313261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Although clinical trials of cell-based approaches to cardiovascular disease have yielded some promising results, no cell-based therapy has achieved regulatory approval for a cardiovascular indication. To broadly assess the challenges to regulatory approval and identify strategies to facilitate this goal, the Cardiac Safety Research Consortium sponsored a session during the Texas Heart Institute International Symposium on Cardiovascular Regenerative Medicine in September 2017. This session convened leaders in cardiovascular regenerative medicine, including participants from academia, the pharmaceutical industry, the US Food and Drug Administration, and the Cardiac Safety Research Consortium, with particular focus on treatments closest to regulatory approval. A goal of the session was to identify barriers to regulatory approval and potential pathways to overcome them. Barriers identified include manufacturing and therapeutic complexity, difficulties identifying an optimal comparator group, limited industry capacity for funding pivotal clinical trials, and challenges to demonstrating efficacy on clinical end points required for regulatory decisions. Strategies to overcome these barriers include precompetitive development of a cell therapy registry network to enable dual-purposing of clinical data as part of pragmatic clinical trial design, development of standardized terminology for product activity and end points to facilitate this registry, use of innovative statistical methods and quality of life or functional end points to supplement outcomes such as death or heart failure hospitalization and reduce sample size, involvement of patients in determining the research agenda, and use of the Food and Drug Administration's new Regenerative Medicine Advanced Therapy designation to facilitate early discussion with regulatory authorities when planning development pathways.
Collapse
Affiliation(s)
- Alexander C Fanaroff
- From the Division of Cardiology (A.C.F., M.W.K., T.J.P.).,Duke Clinical Research Institute (A.C.F., V.M., M.W.K., T.J.P.)
| | - Valarie Morrow
- Duke Clinical Research Institute (A.C.F., V.M., M.W.K., T.J.P.)
| | - Mitchell W Krucoff
- From the Division of Cardiology (A.C.F., M.W.K., T.J.P.).,Duke Clinical Research Institute (A.C.F., V.M., M.W.K., T.J.P.)
| | - Jonathan H Seltzer
- Duke University School of Medicine, Durham, NC; ACI Clinical, Bala Cynwyd, PA (J.H.S.)
| | - Emerson C Perin
- Stem Cell Center and Regenerative Medicine Research, Texas Heart Institute, Houston (E.C.P., D.A.T., L.W.M.)
| | - Doris A Taylor
- Stem Cell Center and Regenerative Medicine Research, Texas Heart Institute, Houston (E.C.P., D.A.T., L.W.M.)
| | - Leslie W Miller
- Stem Cell Center and Regenerative Medicine Research, Texas Heart Institute, Houston (E.C.P., D.A.T., L.W.M.)
| | - Andreas M Zeiher
- Department of Cardiology, University of Frankfurt, Germany (A.M.Z.)
| | - Francisco Fernández-Avilés
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, CIBERCV, Madrid, Spain (F.F.-A.)
| | - Douglas W Losordo
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (D.W.L.).,Caladrius Biosciences Inc, Basking Ridge, NJ (D.W.L.)
| | - Timothy D Henry
- Cedars-Sinai Smidt Heart Institute, Los Angeles, CA (T.D.H.)
| | - Thomas J Povsic
- From the Division of Cardiology (A.C.F., M.W.K., T.J.P.).,Duke Clinical Research Institute (A.C.F., V.M., M.W.K., T.J.P.)
| |
Collapse
|
4
|
Moreno A, Pitoc GA, Ganson NJ, Layzer JM, Hershfield MS, Tarantal AF, Sullenger BA. Anti-PEG Antibodies Inhibit the Anticoagulant Activity of PEGylated Aptamers. Cell Chem Biol 2019; 26:634-644.e3. [PMID: 30827937 PMCID: PMC6707742 DOI: 10.1016/j.chembiol.2019.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/17/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
Biopharmaceuticals have become increasingly attractive therapeutic agents and are often PEGylated to enhance their pharmacokinetics and reduce their immunogenicity. However, recent human clinical trials have demonstrated that administration of PEGylated compounds can evoke anti-PEG antibodies. Considering the ubiquity of PEG in commercial products and the presence of pre-existing anti-PEG antibodies in patients in large clinical trials evaluating a PEG-modified aptamer, we investigated how anti-PEG antibodies effect the therapeutic activities of PEGylated RNA aptamers. We demonstrate that anti-PEG antibodies can directly bind to and inhibit anticoagulant aptamer function in vitro and in vivo. Moreover, in parallel studies we detected the presence of anti-PEG antibodies in nonhuman primates after a single administration of a PEGylated aptamer. Our results suggest that anti-PEG antibodies can limit the activity of PEGylated drugs and potentially compromise the activity of otherwise effective therapeutic agents.
Collapse
Affiliation(s)
- Angelo Moreno
- Department of Molecular Genetics and Microbiology graduate program, Duke University, Durham, NC, USA,Department of Surgery, Duke University, Durham, NC, USA
| | | | - Nancy J. Ganson
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Juliana M. Layzer
- Department of Surgery, Duke University, Durham, NC, USA,Duke Clinical and Translational Science Institute, Durham, NC, USA
| | | | - Alice F. Tarantal
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, NHLBI Center for Gene Transfer for Heart, Lung, and Blood Disease, and California National Primate Research Center, University of California, Davis, CA, USA
| | - Bruce A. Sullenger
- Department of Molecular Genetics and Microbiology graduate program, Duke University, Durham, NC, USA,Department of Surgery, Duke University, Durham, NC, USA,Contact Info: Corresponding Author and Lead Contact:
| |
Collapse
|
5
|
Wang Y, Xu F, Ma J, Shi J, Chen S, Liu Z, Liu J. Effect of stem cell transplantation on patients with ischemic heart failure: a systematic review and meta-analysis of randomized controlled trials. Stem Cell Res Ther 2019; 10:125. [PMID: 30999928 PMCID: PMC6472092 DOI: 10.1186/s13287-019-1214-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Stem cell transplantation (SCT) has become a promising way to treat ischemic heart failure (IHF). We performed a large-scale meta-analysis of randomized clinical trials to investigate the efficacy and safety of SCT in IHF patients. Randomized controlled trials (RCTs) involving stem cell transplantation for the treatment of IHF were identified by searching the PubMed, EMBASE, SpringerLink, Web of Science, and Cochrane Systematic Review databases as well as from reviews and the reference lists of relevant articles. Fourteen eligible randomized controlled trials were included in this study, for a total of 669 IHF patients, of which 380 patients were treated with SCT. The weighted mean difference (WMD) was calculated for changes in the New York Heart Association (NYHA) class, left ventricular ejection fraction (LVEF), left ventricular end-diastolic and end-systolic volumes (LVEDV and LVESV), and Canadian Cardiovascular Society (CCS) angina grade using a fixed effects model, while relative risk (RR) was used for mortality. Compared with the control group, SCT significantly lowered the NYHA class (MD = − 0.73, 95% CI − 1.32 to − 0.14, P < 0.05), LVESV (MD = − 14.80, 95% CI − 20.88 to − 8.73, P < 0.05), and CCS grade (MD = − 0.81, 95% CI − 1.45 to − 0.17, P < 0.05). Additionally, SCT increased LVEF (MD = 6.55, 95% CI 5.93 to 7.16, P < 0.05). However, LVEDV (MD = − 0.33, 95% CI − 1.09 to 0.44, P > 0.05) and mortality (RR = 0.86, 95% CI 0.45 to 1.66, P > 0.05) did not differ between the two groups. This meta-analysis suggests that SCT may contribute to the improvement of LVEF, as well as the reduction of the NYHA class, CCS grade, and LVESV. In addition, SCT does not affect mortality.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Fen Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jingwei Ma
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Si Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Zongtao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Junwei Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
6
|
Midterm outcomes of transmyocardial laser revascularization with intramyocardial injection of adipose derived stromal cells for severe refractory angina. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2018; 14:176-182. [PMID: 30008770 PMCID: PMC6041827 DOI: 10.5114/aic.2018.76409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 12/28/2022] Open
Abstract
Introduction Refractory angina has limited effective therapeutic options and often contributes to frequent hospitalizations, morbidity and impaired quality of life. Aim We sought to examine midterm results of a bio-interventional therapy combining transmyocardial laser revascularization (TMLR) and intramyocardial injection of adipose derived stem cells (ADSC) in patients with refractory angina not amenable to percutaneous or surgical revascularization. Material and methods We included 15 patients with severe refractory angina and anterior wall ischemia who were ineligible for revascularization strategies. Adipose tissue was harvested and purified, giving the stem cell concentrate. All patients underwent left anterior thoracotomy and TMLR using a low-powered holmium : yttrium–aluminum–garnet laser and intramyocardial injection of ADSC using a combined delivery system. Results No deaths or major adverse cardiovascular or cerebrovascular events were observed in the 6-month follow-up. Mean ejection fraction increased from 35% to 38%, and mean Canadian Cardiovascular Society Angina Score decreased from 3.2 to 1.4, with decreased necessity of nitrate usage. Seventy-three percent of patients reported health improvement particularly regarding general health and bodily pain. Improvement in endocardial movement, myocardial thickening and stroke volume index (35.26 to 46.23 ml/m2) on cardiac magnetic resonance imaging (MRI) was observed in 3 patients who had repeat CMR imaging after 6 months. Conclusions Our study suggested that interventional therapy combining TMLR with intramyocardial implantation of ADSC may reduce symptoms and improve quality of life in patients with refractory angina. These early findings need further validation in large scale randomized controlled trials.
Collapse
|
7
|
Loisel F, Provost B, Haddad F, Guihaire J, Amsallem M, Vrtovec B, Fadel E, Uzan G, Mercier O. Stem cell therapy targeting the right ventricle in pulmonary arterial hypertension: is it a potential avenue of therapy? Pulm Circ 2018; 8:2045893218755979. [PMID: 29480154 PMCID: PMC5844533 DOI: 10.1177/2045893218755979] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an incurable disease characterized by an increase in pulmonary arterial pressure due to pathological changes to the pulmonary vascular bed. As a result, the right ventricle (RV) is subject to an increased afterload and undergoes multiple changes, including a decrease in capillary density. All of these dysfunctions lead to RV failure. A number of studies have shown that RV function is one of the main prognostic factors for PAH patients. Many stem cell therapies targeting the left ventricle are currently undergoing development. The promising results observed in animal models have led to clinical trials that have shown an improvement of cardiac function. In contrast to left heart disease, stem cell therapy applied to the RV has remained poorly studied, even though it too may provide a therapeutic benefit. In this review, we discuss stem cell therapy as a treatment for RV failure in PAH. We provide an overview of the results of preclinical and clinical studies for RV cell therapies. Although a large number of studies have targeted the pulmonary circulation rather than the RV directly, there are nonetheless encouraging results in the literature that indicate that cell therapies may have a direct beneficial effect on RV function. This cell therapy strategy may therefore hold great promise and warrants further studies in PAH patients.
Collapse
Affiliation(s)
- Fanny Loisel
- 1 36705 Research and Innovation Unit, Inserm UMR-S 999, Marie Lannelongue Hospital, Universite Paris Sud, Paris-Saclay University, Le Plessis Robinson, France.,2 Inserm 1197 Research Unit, Universite Paris Sud, Paris-Saclay University, Villejuif, France
| | - Bastien Provost
- 1 36705 Research and Innovation Unit, Inserm UMR-S 999, Marie Lannelongue Hospital, Universite Paris Sud, Paris-Saclay University, Le Plessis Robinson, France
| | - François Haddad
- 3 Cardiovascular Medicine, Stanford Hospital, Stanford University, CA, USA
| | - Julien Guihaire
- 1 36705 Research and Innovation Unit, Inserm UMR-S 999, Marie Lannelongue Hospital, Universite Paris Sud, Paris-Saclay University, Le Plessis Robinson, France
| | - Myriam Amsallem
- 1 36705 Research and Innovation Unit, Inserm UMR-S 999, Marie Lannelongue Hospital, Universite Paris Sud, Paris-Saclay University, Le Plessis Robinson, France
| | - Bojan Vrtovec
- 4 Department of Cardiology, Advanced Heart Failure and Transplantation Center, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Elie Fadel
- 1 36705 Research and Innovation Unit, Inserm UMR-S 999, Marie Lannelongue Hospital, Universite Paris Sud, Paris-Saclay University, Le Plessis Robinson, France.,5 Department of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Marie Lannelongue Hospital, Universite Paris Sud, Paris-Saclay University, Le Plessis Robinson, France
| | - Georges Uzan
- 2 Inserm 1197 Research Unit, Universite Paris Sud, Paris-Saclay University, Villejuif, France
| | - Olaf Mercier
- 1 36705 Research and Innovation Unit, Inserm UMR-S 999, Marie Lannelongue Hospital, Universite Paris Sud, Paris-Saclay University, Le Plessis Robinson, France.,5 Department of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Marie Lannelongue Hospital, Universite Paris Sud, Paris-Saclay University, Le Plessis Robinson, France
| |
Collapse
|
8
|
Dong F, Patnaik S, Duan ZH, Kiedrowski M, Penn MS, Mayorga ME. A Novel Role for CAMKK1 in the Regulation of the Mesenchymal Stem Cell Secretome. Stem Cells Transl Med 2017; 6:1759-1766. [PMID: 28688176 PMCID: PMC5689779 DOI: 10.1002/sctm.17-0046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/21/2017] [Indexed: 02/06/2023] Open
Abstract
Transplantation of adult stem cells into myocardial tissue after acute myocardial infarction (AMI), has been shown to improve tissue recovery and prevent progression to ischemic cardiomyopathy. Studies suggest that the effects of mesenchymal stem cells (MSC) are due to paracrine factors released by MSC, as the benefits of MSC can be achieved through delivery of conditioned media (CM) alone. We previously demonstrated that downregulation of Dab2 enhances MSC cardiac protein expression and improves cardiac function after AMI following MSC engraftment. In order to define the molecular mechanisms that regulate MSC secretome, we analyzed gene arrays in MSC following downregulation of Dab2 via TGFβ1 pretreatment or transfection with Dab2:siRNA or miR‐145. We identified 23 genes whose expressions were significantly changed in all three conditions. Among these genes, we have initially focused our validation and functional work on calcium/calmodulin‐dependent protein kinase kinase‐1 (CAMKK1). We quantified the effects of CAMKK1 overexpression in MSC following injection of CM after AMI. Injections of CM from MSC with CAMKK1 over‐expression correlated with an increase in vascular density (CAMKK1 CM: 2,794.95 ± 44.2 versus Control: 1,290.69 ± 2.8 vessels/mm2) and decreased scar formation (CAMKK1 CM 50% ± 3.2% versus Control: 28% ± 1.4%), as well as improved cardiac function. Direct overexpression of CAMKK1 in infarcted tissue using a CAMKK1‐encoding plasmid significantly improved ejection fraction (CAMKK1: 83.2% ± 5.4% versus saline: 51.7% ± 5.8%. Baseline: 91.3% ± 4.3%) and decreased infarct size after AMI. Our data identify a novel role for CAMKK1 as regulator of the MSC secretome and demonstrate that direct overexpression of CAMKK1 in infarcted cardiac tissue, results in therapeutic beneficial effects. Stem Cells Translational Medicine2017;6:1759–1766
Collapse
Affiliation(s)
- Feng Dong
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Shyam Patnaik
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | | | - Matthew Kiedrowski
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Marc S Penn
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA.,Cardiovascular Department, Summa Cardiovascular Institute, Summa Health System, Akron, Ohio, USA
| | - Maritza E Mayorga
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| |
Collapse
|
9
|
Avigo C, Flori A, Armanetti P, Di Lascio N, Kusmic C, Jose J, Losi P, Soldani G, Faita F, Menichetti L. Strategies for non-invasive imaging of polymeric biomaterial in vascular tissue engineering and regenerative medicine using ultrasound and photoacoustic techniques. POLYM INT 2016. [DOI: 10.1002/pi.5113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Cinzia Avigo
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Alessandra Flori
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Paolo Armanetti
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Nicole Di Lascio
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Claudia Kusmic
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Jithin Jose
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Paola Losi
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Giorgio Soldani
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Francesco Faita
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Luca Menichetti
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| |
Collapse
|