1
|
Singh SB, Ng SJ, Lau HC, Khanal K, Bhattarai S, Paudyal P, Shrestha BB, Naseer R, Sandhu S, Gokhale S, Raynor WY. Emerging PET Tracers in Cardiac Molecular Imaging. Cardiol Ther 2023; 12:85-99. [PMID: 36593382 PMCID: PMC9986170 DOI: 10.1007/s40119-022-00295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/26/2022] [Indexed: 01/04/2023] Open
Abstract
18F-fluorodeoxyglucose (FDG) and 18F-sodium fluoride (NaF) represent emerging PET tracers used to assess atherosclerosis-related inflammation and molecular calcification, respectively. By localizing to sites with high glucose utilization, FDG has been used to assess myocardial viability for decades, and its role in evaluating cardiac sarcoidosis has come to represent a major application. In addition to determining late-stage changes such as loss of perfusion or viability, by targeting mechanisms present in atherosclerosis, PET-based techniques have the ability to characterize atherogenesis in the early stages to guide intervention. Although it was once thought that FDG would be a reliable indicator of ongoing plaque formation, micro-calcification as portrayed by NaF-PET/CT appears to be a superior method of monitoring disease progression. PET imaging with NaF has the additional advantage of being able to determine abnormal uptake due to coronary artery disease, which is obscured by physiologic myocardial activity on FDG-PET/CT. In this review, we discuss the evolving roles of FDG, NaF, and other PET tracers in cardiac molecular imaging.
Collapse
Affiliation(s)
- Shashi Bhushan Singh
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Sze Jia Ng
- Department of Medicine, Crozer-Chester Medical Center, 1 Medical Center Boulevard, Upland, PA, 19013, USA
| | - Hui Chong Lau
- Department of Medicine, Crozer-Chester Medical Center, 1 Medical Center Boulevard, Upland, PA, 19013, USA
| | - Kishor Khanal
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
- Division of Cardiology, Memorial Healthcare System, 3501 Johnson Street, Hollywood, FL, 33021, USA
| | - Sanket Bhattarai
- Department of Medicine, KIST Medical College, Mahalaxmi 01, Lalitpur, Bagmati, Nepal
| | - Pranita Paudyal
- West China Hospital, Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Bimash Babu Shrestha
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Rizwan Naseer
- Department of Medicine, Crozer-Chester Medical Center, 1 Medical Center Boulevard, Upland, PA, 19013, USA
| | - Simran Sandhu
- College of Health and Human Development, Pennsylvania State University, 10 East College Avenue, University Park, PA, 16802, USA
| | - Saket Gokhale
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - William Y Raynor
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
- Department of Radiology, Rutgers Robert Wood Johnson Medical School, 1 Robert Wood Johnson Place, MEB #404, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
2
|
Galli E, Baritussio A, Sitges M, Donnellan E, Jaber WA, Gimelli A. Multi-modality imaging to guide the implantation of cardiac electronic devices in heart failure: is the sum greater than the individual components? Eur Heart J Cardiovasc Imaging 2023; 24:163-176. [PMID: 36458875 DOI: 10.1093/ehjci/jeac237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
Heart failure is a clinical syndrome with an increasing prevalence and incidence worldwide that impacts patients' quality of life, morbidity, and mortality. Implantable cardioverter-defibrillator and cardiac resynchronization therapy are pillars of managing patients with HF and reduced left ventricular ejection fraction. Despite the advances in cardiac imaging, the assessment of patients needing cardiac implantable electronic devices relies essentially on the measure of left ventricular ejection fraction. However, multi-modality imaging can provide important information concerning the aetiology of heart failure, the extent and localization of myocardial scar, and the pathophysiological mechanisms of left ventricular conduction delay. This paper aims to highlight the main novelties and progress in the field of multi-modality imaging to identify patients who will benefit from cardiac resynchronization therapy and/or implantable cardioverter-defibrillator. We also want to underscore the boundaries that prevent the application of imaging-derived parameters to patients who will benefit from cardiac implantable electronic devices and orient the choice of the device. Finally, we aim at providing some reflections for future research in this field.
Collapse
Affiliation(s)
- Elena Galli
- Department of Cardiology, University Hospital of Rennes, 35000 Rue Henri Le Guilloux, Rennes, France
| | - Anna Baritussio
- Cardiology, Department of Cardiac, Vascular, Thoracic Sciences and Public Health, University Hospital of Padua, 35121 Via Nicolò Giustiniani, Padua, Italy
| | - Marta Sitges
- Cardiovascular Institute, Hospital Clínic, Universitat de Barcelona, 08036 C. de Villarroel, Barcelona, Spain
| | - Eoin Donnellan
- Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Wael A Jaber
- Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Alessia Gimelli
- Fondazione Toscana G. Monasterio, 56124 Via Giuseppe Moruzzi, Pisa, Italy
| |
Collapse
|
3
|
Treglia G, Piccardo A, Garibotto V. [ 18F]FDOPA positron emission tomography for cardiac innervation imaging: a new way or a dead-end street? Clin Auton Res 2022; 32:399-401. [PMID: 36083420 DOI: 10.1007/s10286-022-00893-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 01/31/2023]
Affiliation(s)
- Giorgio Treglia
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Via Gallino 12, CH-6500, Bellinzona, Switzerland. .,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland. .,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.
| | - Arnoldo Piccardo
- Department of Nuclear Medicine, Ente Ospedaliero Ospedali Galliera, Genoa, Italy
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Geneva University and Center for Biomedical Imaging, Geneva, Switzerland
| |
Collapse
|
4
|
Ismailani US, Buchler A, Farber G, Pekošak A, Farber E, MacMullin N, Suuronen EJ, Vasdev N, Beanlands RSB, de Kemp RA, Rotstein BH. Cardiac Sympathetic Positron Emission Tomography Imaging with Meta-[ 18F]Fluorobenzylguanidine is Sensitive to Uptake-1 in Rats. ACS Chem Neurosci 2021; 12:4350-4360. [PMID: 34714061 DOI: 10.1021/acschemneuro.1c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Dysfunction of the cardiac sympathetic nervous system contributes to the development of cardiovascular diseases including ischemia, heart failure, and arrhythmias. Molecular imaging probes such as meta-[123I]iodobenzylguanidine have demonstrated the utility of assessing neuronal integrity by targeting norepinephrine transporter (NET, uptake-1). However, current radiotracers can report only on innervation due to suboptimal kinetics and lack sensitivity to NET in rodents, precluding mechanistic studies in these species. The objective of this work was to characterize myocardial sympathetic neuronal uptake mechanisms and kinetics of the positron emission tomography (PET) radiotracer meta-[18F]fluorobenzylguanidine ([18F]mFBG) in rats. Automated synthesis using spirocyclic iodonium(III) ylide radiofluorination produces [18F]mFBG in 24 ± 1% isolated radiochemical yield and 30-95 GBq/μmol molar activity. PET imaging in healthy rats delineated the left ventricle, with monoexponential washout kinetics (kmono = 0.027 ± 0.0026 min-1, Amono = 3.08 ± 0.33 SUV). Ex vivo biodistribution studies revealed tracer retention in the myocardium, while pharmacological treatment with selective NET inhibitor desipramine, nonselective neuronal and extraneuronal uptake-2 inhibitor phenoxybenzamine, and neuronal ablation with neurotoxin 6-hydroxydopamine reduced myocardial retention by 33, 76, and 36%, respectively. Clearance of [18F]mFBG from the myocardium was unaffected by treatment with uptake-1 and uptake-2 inhibitors following peak myocardial activity. These results suggest that myocardial distribution of [18F]mFBG in rats is dependent on both NET and extraneuronal transporters and that limited reuptake to the myocardium occurs. [18F]mFBG may therefore prove useful for imaging intraneuronal dysfunction in small animals.
Collapse
Affiliation(s)
- Uzair S. Ismailani
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Ariel Buchler
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - Gedaliah Farber
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | | | - Eadan Farber
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Nicole MacMullin
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Erik J. Suuronen
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Rob S. B. Beanlands
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Robert A. de Kemp
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Benjamin H. Rotstein
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Private, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|