1
|
Chang D, Sun C, Tian X, Liu H, Jia Y, Guo Z. Regulation of cardiac fibroblasts reprogramming into cardiomyocyte-like cells with a cocktail of small molecule compounds. FEBS Open Bio 2024; 14:983-1000. [PMID: 38693086 PMCID: PMC11148126 DOI: 10.1002/2211-5463.13811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
Myocardial infarction results in extensive cardiomyocyte apoptosis, leading to the formation of noncontractile scar tissue. Given the limited regenerative capacity of adult mammalian cardiomyocytes, direct reprogramming of cardiac fibroblasts (CFs) into cardiomyocytes represents a promising therapeutic strategy for myocardial repair, and small molecule drugs might offer a more attractive alternative to gene editing approaches in terms of safety and clinical feasibility. This study aimed to reprogram rat CFs into cardiomyocytes using a small molecular chemical mixture comprising CHIR99021, Valproic acid, Dorsomorphin, SB431542, and Forskolin. Immunofluorescence analysis revealed a significant increase in the expression of cardiomyocyte-specific markers, including cardiac troponin T (cTnT), Connexin 43 (Cx43), α-actinin, and Tbx5. Changes in intracellular calcium ion levels and Ca2+ signal transfer between adjacent cells were monitored using a calcium ion fluorescence probe. mRNA sequencing analysis demonstrated the upregulation of genes associated with cardiac morphogenesis, myocardial differentiation, and muscle fiber contraction during CF differentiation induced by the small-molecule compounds. Conversely, the expression of fibroblast-related genes was downregulated. These findings suggest that chemical-induced cell fate conversion of rat CFs into cardiomyocyte-like cells is feasible, offering a potential therapeutic solution for myocardial injury.
Collapse
Affiliation(s)
| | - Changye Sun
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| | - Xiangqin Tian
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| | - Hongyin Liu
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| | - Yangyang Jia
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| |
Collapse
|
2
|
Zhang F, Geng L, Zhang J, Han S, Guo M, Xu Y, Chen C. miR-486-5p diagnosed atrial fibrillation, predicted the risk of left atrial fibrosis, and regulated angiotensin II-induced cardiac fibrosis via modulating PI3K/Akt signaling through targeting FOXO1. Mol Cell Biochem 2024:10.1007/s11010-024-05027-8. [PMID: 38782834 DOI: 10.1007/s11010-024-05027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
This study focused on miR-486-5p in atrial fibrillation (AF) evaluating its clinical significance and revealing its regulatory mechanism in cardiac fibroblasts, aiming to explore a novel biomarker for AF. The study enrolled 131 AF patients and 77 non-AF individuals. With the help of polymerase chain reaction (PCR), the expression of miR-486-5p was evaluated. The significance of miR-486-5p in the diagnosis of AF and the occurrence of left atrial fibrosis (LAF) was assessed by receiver operating curve (ROC) and logistic analyses. The regulatory effect and mechanism of miR-486-5p on cardiac fibrosis were investigated in human cardiac fibroblasts treated with angiotensin II. miR-486-5p was significantly upregulated in AF patients and discriminated AF patients from non-AF individuals. Increasing miR-486-5p showed a significant association with decreasing left ventricular ejection fraction (LVEF), increasing left atrial diameter (LAD) and left ventricular end-diastolic diameter (LVEDd), and the high incidence of LAF in AF patients. Moreover, miR-486-5p was identified as a risk factor for LAF and could distinguish AF patients with LAF and without LAF. In cardiac fibroblasts, angiotensin II induced the upregulation of miR-486-5p and promoted cell proliferation, migration, and collagen synthesis. miR-486-5p negatively regulated forkhead box O1 (FOXO1) and its knockdown could reverse the promoted effect of angiotensin II. FOXO1 alleviated the effect of miR-486-5p, and the miR-486-5p/FOXO1 could activate PI3K/Akt signaling. The activation of PI3K/Akt signaling alleviated the enhanced proliferation, migration, and collagen synthesis of cardiac fibroblasts induced by angiotensin II, and its inhibition showed opposite effects. Increased miR-486-5p served as a biomarker for the diagnosis and development prediction of AF. miR-486-5p regulated cardiac fibroblast viability and collagen synthesis via modulating the PI3K/Akt signaling through targeting FOXO1.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Cardiology, Affiliated Hospital of Hebei University, No. 212, Yuhua East Road, Baoding, 071000, People's Republic of China
| | - Lu Geng
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People's Republic of China
| | - Jing Zhang
- Department of Cardiology, Affiliated Hospital of Hebei University, No. 212, Yuhua East Road, Baoding, 071000, People's Republic of China
| | - Siliang Han
- Department of Cardiology, Affiliated Hospital of Hebei University, No. 212, Yuhua East Road, Baoding, 071000, People's Republic of China
| | - Mengya Guo
- Department of Cardiology, Affiliated Hospital of Hebei University, No. 212, Yuhua East Road, Baoding, 071000, People's Republic of China
| | - Yaxin Xu
- Department of Cardiology, Affiliated Hospital of Hebei University, No. 212, Yuhua East Road, Baoding, 071000, People's Republic of China
| | - Chunhong Chen
- Department of Cardiology, Affiliated Hospital of Hebei University, No. 212, Yuhua East Road, Baoding, 071000, People's Republic of China.
| |
Collapse
|
3
|
Song S, Zhang X, Huang Z, Zhao Y, Lu S, Zeng L, Cai F, Wang T, Pei Z, Weng X, Luo W, Lu H, Wei Z, Wu J, Yu P, Shen L, Zhang X, Sun A, Ge J. TEA domain transcription factor 1(TEAD1) induces cardiac fibroblasts cells remodeling through BRD4/Wnt4 pathway. Signal Transduct Target Ther 2024; 9:45. [PMID: 38374140 PMCID: PMC10876703 DOI: 10.1038/s41392-023-01732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 02/21/2024] Open
Abstract
Cardiac fibroblasts (CFs) are the primary cells tasked with depositing and remodeling collagen and significantly associated with heart failure (HF). TEAD1 has been shown to be essential for heart development and homeostasis. However, fibroblast endogenous TEAD1 in cardiac remodeling remains incompletely understood. Transcriptomic analyses revealed consistently upregulated cardiac TEAD1 expression in mice 4 weeks after transverse aortic constriction (TAC) and Ang-II infusion. Further investigation revealed that CFs were the primary cell type expressing elevated TEAD1 levels in response to pressure overload. Conditional TEAD1 knockout was achieved by crossing TEAD1-floxed mice with CFs- and myofibroblasts-specific Cre mice. Echocardiographic and histological analyses demonstrated that CFs- and myofibroblasts-specific TEAD1 deficiency and treatment with TEAD1 inhibitor, VT103, ameliorated TAC-induced cardiac remodeling. Mechanistically, RNA-seq and ChIP-seq analysis identified Wnt4 as a novel TEAD1 target. TEAD1 has been shown to promote the fibroblast-to-myofibroblast transition through the Wnt signalling pathway, and genetic Wnt4 knockdown inhibited the pro-transformation phenotype in CFs with TEAD1 overexpression. Furthermore, co-immunoprecipitation combined with mass spectrometry, chromatin immunoprecipitation, and luciferase assays demonstrated interaction between TEAD1 and BET protein BRD4, leading to the binding and activation of the Wnt4 promoter. In conclusion, TEAD1 is an essential regulator of the pro-fibrotic CFs phenotype associated with pathological cardiac remodeling via the BRD4/Wnt4 signalling pathway.
Collapse
Affiliation(s)
- Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Xiaokai Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Zihang Huang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Yongchao Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Shuyang Lu
- Department of cardiac surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Linqi Zeng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Fengze Cai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Tongyao Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Zhiqiang Pei
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Xinyu Weng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Wei Luo
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Zilun Wei
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Jian Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Peng Yu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Li Shen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Xiaochun Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, China.
- Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Perreault LR, Daley MC, Watson MC, Rastogi S, Jaiganesh A, Porter EC, Duffy BM, Black LD. Characterization of cardiac fibroblast-extracellular matrix crosstalk across developmental ages provides insight into age-related changes in cardiac repair. Front Cell Dev Biol 2024; 12:1279932. [PMID: 38434619 PMCID: PMC10904575 DOI: 10.3389/fcell.2024.1279932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024] Open
Abstract
Heart failure afflicts an estimated 6.5 million people in the United States, driven largely by incidents of coronary heart disease (CHD). CHD leads to heart failure due to the inability of adult myocardial tissue to regenerate after myocardial infarction (MI). Instead, immune cells and resident cardiac fibroblasts (CFs), the cells responsible for the maintenance of the cardiac extracellular matrix (cECM), drive an inflammatory wound healing response, which leads to fibrotic scar tissue. However, fibrosis is reduced in fetal and early (<1-week-old) neonatal mammals, which exhibit a transient capability for regenerative tissue remodeling. Recent work by our laboratory and others suggests this is in part due to compositional differences in the cECM and functional differences in CFs with respect to developmental age. Specifically, fetal cECM and CFs appear to mitigate functional loss in MI models and engineered cardiac tissues, compared to adult CFs and cECM. We conducted 2D studies of CFs on solubilized fetal and adult cECM to investigate whether these age-specific functional differences are synergistic with respect to their impact on CF phenotype and, therefore, cardiac wound healing. We found that the CF migration rate and stiffness vary with respect to cell and cECM developmental age and that CF transition to a fibrotic phenotype can be partially attenuated in the fetal cECM. However, this effect was not observed when cells were treated with cytokine TGF-β1, suggesting that inflammatory signaling factors are the dominant driver of the fibroblast phenotype. This information may be valuable for targeted therapies aimed at modifying the CF wound healing response and is broadly applicable to age-related studies of cardiac remodeling.
Collapse
Affiliation(s)
- Luke R. Perreault
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Mark C. Daley
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Matthew C. Watson
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Sagar Rastogi
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Ajith Jaiganesh
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Elizabeth C. Porter
- Cellular, Molecular and Developmental Biology Program, Graduate School for Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Breanna M. Duffy
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Lauren D. Black
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
- Cellular, Molecular and Developmental Biology Program, Graduate School for Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
5
|
Shumliakivska M, Luxán G, Hemmerling I, Scheller M, Li X, Müller-Tidow C, Schuhmacher B, Sun Z, Dendorfer A, Debes A, Glaser SF, Muhly-Reinholz M, Kirschbaum K, Hoffmann J, Nagel E, Puntmann VO, Cremer S, Leuschner F, Abplanalp WT, John D, Zeiher AM, Dimmeler S. DNMT3A clonal hematopoiesis-driver mutations induce cardiac fibrosis by paracrine activation of fibroblasts. Nat Commun 2024; 15:606. [PMID: 38242884 PMCID: PMC10799021 DOI: 10.1038/s41467-023-43003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 10/27/2023] [Indexed: 01/21/2024] Open
Abstract
Hematopoietic mutations in epigenetic regulators like DNA methyltransferase 3 alpha (DNMT3A), play a pivotal role in driving clonal hematopoiesis of indeterminate potential (CHIP), and are associated with unfavorable outcomes in patients suffering from heart failure (HF). However, the precise interactions between CHIP-mutated cells and other cardiac cell types remain unknown. Here, we identify fibroblasts as potential partners in interactions with CHIP-mutated monocytes. We used combined transcriptomic data derived from peripheral blood mononuclear cells of HF patients, both with and without CHIP, and cardiac tissue. We demonstrate that inactivation of DNMT3A in macrophages intensifies interactions with cardiac fibroblasts and increases cardiac fibrosis. DNMT3A inactivation amplifies the release of heparin-binding epidermal growth factor-like growth factor, thereby facilitating activation of cardiac fibroblasts. These findings identify a potential pathway of DNMT3A CHIP-driver mutations to the initiation and progression of HF and may also provide a compelling basis for the development of innovative anti-fibrotic strategies.
Collapse
Affiliation(s)
- Mariana Shumliakivska
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany
| | - Guillermo Luxán
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany
| | - Inga Hemmerling
- Department of Internal Medicine III, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Marina Scheller
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Xue Li
- Department of Internal Medicine III, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Bianca Schuhmacher
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Zhengwu Sun
- Walter-Brendel-Centre of Experimental Medicine, Hospital of the Ludwig-Maximilians-University Munich, Marchioninistraße 68, 81377, München, Germany
| | - Andreas Dendorfer
- Walter-Brendel-Centre of Experimental Medicine, Hospital of the Ludwig-Maximilians-University Munich, Marchioninistraße 68, 81377, München, Germany
| | - Alisa Debes
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Simone-Franziska Glaser
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany
| | - Marion Muhly-Reinholz
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Klara Kirschbaum
- Department of Medicine, Cardiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Jedrzej Hoffmann
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Institute of Experimental and Translational Cardiovascular Imaging, Centre for Cardiovascular Imaging, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Eike Nagel
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Institute of Experimental and Translational Cardiovascular Imaging, Centre for Cardiovascular Imaging, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Valentina O Puntmann
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Institute of Experimental and Translational Cardiovascular Imaging, Centre for Cardiovascular Imaging, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sebastian Cremer
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany
- Department of Medicine, Cardiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Florian Leuschner
- Department of Internal Medicine III, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Wesley Tyler Abplanalp
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany
| | - David John
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany
| | - Andreas M Zeiher
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany.
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany.
| |
Collapse
|
6
|
Li W, Liu P, Liu H, Zhang F, Fu Y. Integrative analysis of genes reveals endoplasmic reticulum stress-related immune responses involved in dilated cardiomyopathy with fibrosis. Apoptosis 2023; 28:1406-1421. [PMID: 37462883 PMCID: PMC10425499 DOI: 10.1007/s10495-023-01871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/11/2023]
Abstract
Endoplasmic reticulum (ER) stress has been implicated in the mechanisms underlying the fibrotic process in dilated cardiomyopathy (DCM) and results in disease exacerbation; however, the molecular details of this mechanism remain unclear. Through microarray and bioinformatic analyses, we explored genetic alterations in myocardial fibrosis (MF) and identified potential biomarkers related to ER stress. We integrated two public microarray datasets, including 19 DCM and 16 control samples, and comprehensively analyzed differential expression, biological functions, molecular interactions, and immune infiltration levels. The immune cell signatures suggest that inflammatory immune imbalance may promote MF progression. Both innate and adaptive immunity are involved in MF development, and T-cell subsets account for a considerable proportion of immune infiltration. The immune subtypes were further compared, and 103 differentially expressed ER stress-related genes were identified. These genes were mainly enriched in neuronal apoptosis, protein modification, oxidative stress reaction, glycolysis and gluconeogenesis, and NOD-like receptor signaling pathways. Furthermore, the 15 highest-scoring core genes were identified. Seven hub genes (AK1, ARPC3, GSN, KPNA2, PARP1, PFKL, and PRKC) might participate in immune-related mechanisms. Our results offer a new integrative view of the pathways and interaction networks of ER stress-related genes and provide guidance for developing novel therapeutic strategies for MF.
Collapse
Affiliation(s)
- Wanpeng Li
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, 730000, P.R., China
| | - Peiling Liu
- Department of Rheumatology, First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan, 450000, P.R., China
| | - Huilin Liu
- Department of Geriatrics, Peking University Third Hospital, Beijing, 100191, P.R , China
| | - Fuchun Zhang
- Department of Geriatrics, Peking University Third Hospital, Beijing, 100191, P.R , China
| | - Yicheng Fu
- Department of Geriatrics, Peking University Third Hospital, Beijing, 100191, P.R , China.
| |
Collapse
|
7
|
Schumacher D, Curaj A, Staudt M, Simsekyilmaz S, Kanzler I, Boor P, Klinkhammer BM, Li X, Bucur O, Kaabi A, Xu Y, Zheng H, Nilcham P, Schuh A, Rusu M, Liehn EA. Endogenous Modulation of Extracellular Matrix Collagen during Scar Formation after Myocardial Infarction. Int J Mol Sci 2022; 23:ijms232314571. [PMID: 36498897 PMCID: PMC9741070 DOI: 10.3390/ijms232314571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Myocardial infarction is remains the leading cause of death in developed countries. Recent data show that the composition of the extracellular matrix might differ despite similar heart function and infarction sizes. Because collagen is the main component of the extracellular matrix, we hypothesized that changes in inflammatory cell recruitment influence the synthesis of different collagen subtypes in myofibroblasts, thus changing the composition of the scar. We found that neutrophils sustain the proliferation of fibroblasts, remodeling, differentiation, migration and inflammation, predominantly by IL-1 and PPARγ pathways (n = 3). They also significantly inhibit the mRNA expression of fibrillar collagen, maintaining a reduced stiffness in isolated myofibroblasts (n = 4-5). Reducing the neutrophil infiltration in CCR1-/- resulted in increased mRNA expression of collagen 11, moderate expression of collagen 19 and low expression of collagen 13 and 26 in the scar 4 weeks post infarction compared with other groups (n = 3). Mononuclear cells increased the synthesis of all collagen subtypes and upregulated the NF-kB, angiotensin II and PPARδ pathways (n = 3). They increased the synthesis of collagen subtypes 1, 3, 5, 16 and 23 but reduced the expression of collagens 5 and 16 (n = 3). CCR2-/- scar tissue showed higher levels of collagen 13 (n = 3), in association with a significant reduction in stiffness (n = 4-5). Upregulation of the inflammation-related genes in myofibroblasts mostly modulated the fibrillar collagen subtypes, with less effect on the FACIT, network-forming and globular subtypes (n = 3). The upregulation of proliferation and differentiation genes in myofibroblasts seemed to be associated only with the fibrillar collagen subtype, whereas angiogenesis-related genes are associated with fibrillar, network-forming and multiplexin subtypes. In conclusion, although we intend for our findings to deepen the understanding of the mechanism of healing after myocardial infarction and scar formation, the process of collagen synthesis is highly complex, and further intensive investigation is needed to put together all the missing puzzle pieces in this still incipient knowledge process.
Collapse
Affiliation(s)
- David Schumacher
- Department of Anesthesiology, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, 52074 Aachen, Germany
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
| | - Adelina Curaj
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Department for Cardiology, Angiology and Internal Intensive Care, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Mareike Staudt
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
| | - Sakine Simsekyilmaz
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
| | - Isabella Kanzler
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
| | - Peter Boor
- Institute for Pathology, RWTH Aachen University, 52074 Aachen, Germany
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany
- Institute of Molecular Biomedicine, Comenius University, 811 08 Bratislava, Slovakia
| | | | - Xiaofeng Li
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
| | - Octavian Bucur
- “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Viron Molecular Medicine Institute, 1 Boston Place, Ste 2600, Boston, MA 02108, USA
| | - Adnan Kaabi
- Department for Cardiology, Angiology and Internal Intensive Care, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Yichen Xu
- Department for Cardiology, Angiology and Internal Intensive Care, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
- Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
| | - Huabo Zheng
- Department for Cardiology, Angiology and Internal Intensive Care, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
- Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
| | - Pakhwan Nilcham
- Department for Cardiology, Angiology and Internal Intensive Care, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Alexander Schuh
- Department for Cardiology, Angiology and Internal Intensive Care, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Mihaela Rusu
- Department for Cardiology, Angiology and Internal Intensive Care, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
- Correspondence: (M.R.); (E.A.L.); Tel.: +49-241-80-35984 (M.R.); +45-6550-4015 (E.A.L.)
| | - Elisa A. Liehn
- Department for Cardiology, Angiology and Internal Intensive Care, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
- “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
- National Heart Center Singapore, 5 Hospital Dr., Singapore 169609, Singapore
- Correspondence: (M.R.); (E.A.L.); Tel.: +49-241-80-35984 (M.R.); +45-6550-4015 (E.A.L.)
| |
Collapse
|
8
|
Vagnozzi RJ, McKinsey TA. T cell immunotherapy for cardiac fibrosis: mRNA starts the CAR. Cell Stem Cell 2022; 29:352-354. [PMID: 35245466 DOI: 10.1016/j.stem.2022.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fibrosis, or chronic fibroblast activation and extracellular matrix deposition, underlies most cardiovascular diseases and remains challenging to target therapeutically. Reported in Science by Rurik et al., modified mRNA technology can reprogram endogenous T cells into fibroblast-ablating CAR-Ts in mouse hearts, offering a promising and tractable immunotherapy approach for tackling fibrosis.
Collapse
Affiliation(s)
- Ronald J Vagnozzi
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Timothy A McKinsey
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
9
|
|