1
|
Mensah SA, Ahmad S, Alruwaili W, Raval R, Gonuguntla K, Patel B. Cardiovascular events in eGFR-mutation non-small-cell lung cancer patients on osimertinib. Eur J Hosp Pharm 2024:ejhpharm-2024-004319. [PMID: 39461730 DOI: 10.1136/ejhpharm-2024-004319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
OBJECTIVES There have been cases of cardiotoxicity induced by osimertinib in patients with non-small-cell lung cancer (NSCLC). However, limited data exist for a comprehensive cardiotoxicity profile analysis for osimertinib use in NSCLC patients. The aim of this study was to report the entire profile of cardiotoxicities after the initiation of osimertinib in consecutive patients with epidermal growth factor receptor (EGFR) mutation at a single health system. METHODS The data were retrospectively collected from electronic medical records for all patients who were started on osimertinib for NSCLC at West Virginia University Health System. Prevalence of heart failure (HF), atrial fibrillation, and prolonged QT before and after starting osimertinib were calculated. RESULTS This study had 116 participants and the median age was 72 years. The frequency of each new cardiotoxicity was between 6% and 9%, and the overall percentage of patients who had developed any of the four cardiotoxicities while on osimertinib was 19.9%. The median time of follow-up was 477 days and the median time on osimertinib for all patients was 390 days. The strongest risk factor in predicting a new onset cardiac event was hypertension with a hazard ratio (HR) of 6.35 (confidence interval (CI) 1.48 to 27.23, p=0.013) and HR 5.36 (CI 1.23 to 23.39, p=0.025) in univariate and multivariate analysis respectively. CONCLUSION Osimertinib appears to be associated with an increase in cardiac abnormalities. Given the association between this medication exposure and the observed cardiac toxicities, use of osimertinib may entail closer cardiac monitoring of electrocardiogram (ECG) and echocardiogram abnormalities.
Collapse
Affiliation(s)
| | - Syed Ahmad
- Department of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Waleed Alruwaili
- Department of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Rutu Raval
- Heart and Vascular Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Karthik Gonuguntla
- Heart and Vascular Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Brijesh Patel
- Heart and Vascular Institute, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
2
|
Zakaria ZZ, Suleiman M, Benslimane FM, Al-Badr M, Sivaraman S, Korashy HM, Ahmad F, Uddin S, Mraiche F, Yalcin HC. Imatinib‑ and ponatinib‑mediated cardiotoxicity in zebrafish embryos and H9c2 cardiomyoblasts. Mol Med Rep 2024; 30:187. [PMID: 39219269 PMCID: PMC11350628 DOI: 10.3892/mmr.2024.13311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/26/2024] [Indexed: 09/04/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs) offer targeted therapy for cancers but can cause severe cardiotoxicities. Determining their dose‑dependent impact on cardiac function is required to optimize therapy and minimize adverse effects. The dose‑dependent cardiotoxic effects of two TKIs, imatinib and ponatinib, were assessed in vitro using H9c2 cardiomyoblasts and in vivo using zebrafish embryos. In vitro, H9c2 cardiomyocyte viability, apoptosis, size, and surface area were evaluated to assess the impact on cellular health. In vivo, zebrafish embryos were analyzed for heart rate, blood flow velocity, and morphological malformations to determine functional and structural changes. Additionally, reverse transcription‑quantitative PCR (RT‑qPCR) was employed to measure the gene expression of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), established markers of cardiac injury. This comprehensive approach, utilizing both in vitro and in vivo models alongside functional and molecular analyses, provides a robust assessment of the potential cardiotoxic effects. TKI exposure decreased viability and surface area in H9c2 cells in a dose‑dependent manner. Similarly, zebrafish embryos exposed to TKIs exhibited dose‑dependent heart malformation. Both TKIs upregulated ANP and BNP expression, indicating heart injury. The present study demonstrated dose‑dependent cardiotoxic effects of imatinib and ponatinib in H9c2 cells and zebrafish models. These findings emphasize the importance of tailoring TKI dosage to minimize cardiac risks while maintaining therapeutic efficacy. Future research should explore the underlying mechanisms and potential mitigation strategies of TKI‑induced cardiotoxicities.
Collapse
Affiliation(s)
- Zain Z. Zakaria
- Vice President of Health and Medical Sciences Office, QU Health, Qatar University, Doha 2713, Qatar
| | - Muna Suleiman
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | | | - Mashael Al-Badr
- Department of Biology, College of Art and Science, Qatar University, Doha 2713, Qatar
- National Reference Laboratory, Ministry of Public Health, Doha 7744, Qatar
| | - Siveen Sivaraman
- Translational Research Institute, Hamad Medical Corporation, Doha 3050, Qatar
| | - Hesham M. Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Fareed Ahmad
- Translational Research Institute and Dermatology Institute, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Hamad Medical Corporation, Doha 3050, Qatar
- Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar
| | - Fatima Mraiche
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | | |
Collapse
|
3
|
Apolo AB, Bellmunt J, Cordes L, Gupta S, Powles T, Rosenberg JE, Van Der Heijden MS. The clinical use of enfortumab vedotin and pembrolizumab in patients with advanced urothelial carcinoma: using clinical judgement over treatment criteria. ESMO Open 2024; 9:103725. [PMID: 39236601 PMCID: PMC11408050 DOI: 10.1016/j.esmoop.2024.103725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/07/2024] Open
MESH Headings
- Humans
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal/pharmacology
- Carcinoma, Transitional Cell/drug therapy
- Carcinoma, Transitional Cell/pathology
- Urologic Neoplasms/drug therapy
- Urologic Neoplasms/pathology
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Agents, Immunological/pharmacology
- Urinary Bladder Neoplasms/drug therapy
- Urinary Bladder Neoplasms/pathology
- Male
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
Collapse
Affiliation(s)
- A B Apolo
- Center for Cancer Research, National Cancer Institute, Bethesda
| | | | - L Cordes
- Center for Cancer Research, National Cancer Institute, Bethesda
| | - S Gupta
- Cleveland Clinic Taussig Cancer Institute, Cleveland, USA
| | - T Powles
- Barts Cancer Centre, London, UK.
| | | | | |
Collapse
|
4
|
Manhas A, Tripathi D, Thomas D, Sayed N. Cardiovascular Toxicity in Cancer Therapy: Protecting the Heart while Combating Cancer. Curr Cardiol Rep 2024; 26:953-971. [PMID: 39042344 DOI: 10.1007/s11886-024-02099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
PURPOSE OF REVIEW This review explores the cardiovascular toxicity associated with cancer therapies, emphasizing the significance of the growing field of cardio-oncology. It aims to elucidate the mechanisms of cardiotoxicity due to radiotherapy, chemotherapy, and targeted therapies, and to discuss the advancements in human induced pluripotent stem cell technology (hiPSC) for predictive disease modeling. RECENT FINDINGS Recent studies have identified several chemotherapeutic agents, including anthracyclines and kinase inhibitors, that significantly increase cardiovascular risks. Advances in hiPSC technology have enabled the differentiation of these cells into cardiovascular lineages, facilitating more accurate modeling of drug-induced cardiotoxicity. Moreover, integrating hiPSCs into clinical trials holds promise for personalized cardiotoxicity assessments, potentially enhancing patient-specific therapeutic strategies. Cardio-oncology bridges oncology and cardiology to mitigate the cardiovascular side-effects of cancer treatments. Despite advancements in predictive models using hiPSCs, challenges persist in accurately replicating adult heart tissue and ensuring reproducibility. Ongoing research is essential for developing personalized therapies that balance effective cancer treatment with minimal cardiovascular harm.
Collapse
Affiliation(s)
- Amit Manhas
- Stanford Cardiovascular Institute, Stanford, CA, 94305, USA
- Baszucki Family Vascular Surgery Biobank, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dipti Tripathi
- Stanford Cardiovascular Institute, Stanford, CA, 94305, USA
- Division of Vascular Surgery, Department of Surgery, Stanford, CA, 94305, USA
- Baszucki Family Vascular Surgery Biobank, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dilip Thomas
- Stanford Cardiovascular Institute, Stanford, CA, 94305, USA
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Stanford, CA, 94305, USA.
- Division of Vascular Surgery, Department of Surgery, Stanford, CA, 94305, USA.
- Baszucki Family Vascular Surgery Biobank, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
5
|
Costanzo V, Ratre YK, Andretta E, Acharya R, Bhaskar LVKS, Verma HK. A Comprehensive Review of Cancer Drug-Induced Cardiotoxicity in Blood Cancer Patients: Current Perspectives and Therapeutic Strategies. Curr Treat Options Oncol 2024; 25:465-495. [PMID: 38372853 DOI: 10.1007/s11864-023-01175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 02/20/2024]
Abstract
OPINION STATEMENT Cardiotoxicity has emerged as a serious outcome catalyzed by various therapeutic targets in the field of cancer treatment, which includes chemotherapy, radiation, and targeted therapies. The growing significance of cancer drug-induced cardiotoxicity (CDIC) and radiation-induced cardiotoxicity (CRIC) necessitates immediate attention. This article intricately unveils how cancer treatments cause cardiotoxicity, which is exacerbated by patient-specific risks. In particular, drugs like anthracyclines, alkylating agents, and tyrosine kinase inhibitors pose a risk, along with factors such as hypertension and diabetes. Mechanistic insights into oxidative stress and topoisomerase-II-B inhibition are crucial, while cardiac biomarkers show early damage. Timely intervention and prompt treatment, especially with specific agents like dexrazoxane and beta-blockers, are pivotal in the proactive management of CDIC.
Collapse
Affiliation(s)
- Vincenzo Costanzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | - Emanuela Andretta
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - Rakesh Acharya
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - L V K S Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lungs Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, 85764, Munich, Germany.
| |
Collapse
|
6
|
Ekram J, Rathore A, Avila C, Hussein R, Alomar M. Unveiling the Cardiotoxicity Conundrum: Navigating the Seas of Tyrosine Kinase Inhibitor Therapies. Cancer Control 2024; 31:10732748241285755. [PMID: 39318033 PMCID: PMC11440564 DOI: 10.1177/10732748241285755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Background: Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of various solid and hematologic malignancies by targeting dysregulated signaling pathways critical for malignant cell growth. However, these therapeutic benefits are often accompanied by cardiotoxicities, such as hypertension, left ventricular dysfunction, QT prolongation, and tachyarrhythmias, among others. These cardiotoxicities post a significant challenge in clinical management, often limiting the use of otherwise effective therapies. The underlying mechanism of TKI-induced cardiotoxicity appears to be multifaceted, involving several pathways including: direct cardiomyocyte damage, mitochondrial dysfunction, endothelial damage, and disruption of signaling pathways critical for cardiac function. The range and severity of cardiotoxicities vary significantly across different TKIs, necessitating a comprehensive understanding of each agent's specific cardiovascular risk profile. Preventing and managing TKI-induced cardiotoxicity requires a comprehensive, multidisciplinary approach. Early identification of at-risk patients through baseline cardiovascular risk assessments and appropriate monitoring during therapy is crucial. Strategies to mitigate cardiotoxic effects include dose modification, the use of cardioprotective agents, and temporary discontinuation of therapy. Additionally, decision making via multidisciplinary teams ensures minimization of cardiovascular complications while also continuing effective cancer treatment. Historically, data have been limited regarding cardiotoxicity and most cancer therapies, which certainly includes TKIs. This review aims to synthesize the current body of knowledge on TKI-associated cardiotoxicities, while highlighting the importance of vigilance and proactive management to minimize cardiovascular complications.
Collapse
Affiliation(s)
- Jahanzaib Ekram
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Cardio-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Azeem Rathore
- Department of Internal Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Carlos Avila
- Department of Internal Medicine, Manatee Memorial Hospital, Bradenton, FL, USA
| | - Rahbia Hussein
- Department of Internal Medicine, Manatee Memorial Hospital, Bradenton, FL, USA
| | - Mohammed Alomar
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Cardio-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
7
|
Barachini S, Ghelardoni S, Varga ZV, Mehanna RA, Montt-Guevara MM, Ferdinandy P, Madonna R. Antineoplastic drugs inducing cardiac and vascular toxicity - An update. Vascul Pharmacol 2023; 153:107223. [PMID: 37678516 DOI: 10.1016/j.vph.2023.107223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
With the improvement in cancer prognosis due to advances in antitumor therapeutic protocols and new targeted and immunotherapies, we are witnessing a growing increase in survival, however, at the same timeincrease in morbidity among cancer survivors as a consequences of the increased cardiovascular adverse effects of antineoplastic drugs. Common cardiovascular complications of antineoplastic therapies may include cardiac complications such as arrhythmias, myocardial ischemia, left ventricular dysfunction culminating in heart failure as well as vascular complications including arterial hypertension, thromboembolic events, and accelerated atherosclerosis. The toxicity results from the fact that these drugs not only target cancer cells but also affect normal cells within the cardiovascular system. In this article, we review the clinical features and main mechanisms implicated in antineoplastic drug-induced cardiovascular toxicity, including oxidative stress, inflammation, immunothrombosis and growth factors-induced signaling pathways.
Collapse
Affiliation(s)
- Serena Barachini
- Department of Clinical and Experimental Medicine, Laboratory for Cell Therapy, University of Pisa, Pisa, Italy
| | - Sandra Ghelardoni
- Department of Pathology, Laboratory of Biochemistry, University of Pisa, Pisa, Italy
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary; MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Radwa A Mehanna
- Medical Physiology Department, Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Egypt
| | | | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, Pisa, Italy.
| |
Collapse
|
8
|
Iurlo A, Cattaneo D, Bucelli C, Spallarossa P, Passamonti F. Cardiovascular Adverse Events of Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia: Clinical Relevance, Impact on Outcome, Preventive Measures and Treatment Strategies. Curr Treat Options Oncol 2023; 24:1720-1738. [PMID: 38047977 DOI: 10.1007/s11864-023-01149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2023] [Indexed: 12/05/2023]
Abstract
OPINION STATEMENT The introduction of TKIs into the therapeutic armamentarium of CML has changed the disease paradigm, increasing long-term survival from 20% to over 80%, with a life expectancy now approaching that of the general population. Although highly effective, TKIs also have a toxicity profile that is often mild to moderate, but sometimes severe, with multiple kinases involved in the development of adverse events (AEs). Among others, cardiovascular AEs observed in TKI-treated CML patients may represent a significant cause of morbidity and mortality, and their pathogenesis is still only partially understood. In view of the recent introduction into daily clinical practice of new TKIs, namely the STAMP inhibitor asciminib, with a distinct safety profile, hematologists now more than ever have the opportunity to select the most suitable TKI for each patient, an aspect that will be fundamental in terms of personalized preventive and therapeutic strategies. Furthermore, physicians should be aware of the feasibility of TKI dose modifications at all stages of the patients' treatment journey, both at diagnosis for frail or elderly subjects or with multiple comorbidities, and during follow-up for those patients who experience toxicity, as well as to prevent it, with the main objective of reducing side effects while maintaining the response. Consequently, preserving the cardiovascular health of CML patients will likely be a more urgent topic in the near future, with specific measures aimed at controlling cardiovascular risk factors through a multidisciplinary approach involving a panel of healthcare professionals together with the hematologist.
Collapse
Affiliation(s)
- Alessandra Iurlo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milano, Italy.
| | - Daniele Cattaneo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Cristina Bucelli
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milano, Italy
| | - Paolo Spallarossa
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino - Italian IRCCS Cardiology Network, Genova, Italy
| | - Francesco Passamonti
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
9
|
Katsuragawa‐Taminishi Y, Mizutani S, Kawaji‐Kanayama Y, Onishi A, Okamoto H, Isa R, Mizuhara K, Muramatsu A, Fujino T, Tsukamoto T, Shimura Y, Taniwaki M, Miyagawa‐Hayashino A, Konishi E, Kuroda J. Triple targeting of RSK, AKT, and S6K as pivotal downstream effectors of PDPK1 by TAS0612 in B-cell lymphomas. Cancer Sci 2023; 114:4691-4705. [PMID: 37840379 PMCID: PMC10728023 DOI: 10.1111/cas.15995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/09/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
B-cell lymphomas (BCLs) are the most common disease entity among hematological malignancies and have various genetically and molecularly distinct subtypes. In this study, we revealed that the blockade of phosphoinositide-dependent kinase-1 (PDPK1), the master kinase of AGC kinases, induces a growth inhibition via cell cycle arrest and the induction of apoptosis in all eight BCL-derived cell lines examined, including those from activated B-cell-like diffuse large B-cell lymphoma (DLBCL), double expressor DLBCL, Burkitt lymphoma, and follicular lymphoma. We also demonstrated that, in these cell lines, RSK2, AKT, and S6K, but not PLK1, SGK, or PKC, are the major downstream therapeutic target molecules of PDPK1 and that RSK2 plays a central role and AKT and S6K play subsidiary functional roles as the downstream effectors of PDPK1 in cell survival and proliferation. Following these results, we confirmed the antilymphoma efficacy of TAS0612, a triple inhibitor for total RSK, including RSK2, AKT, and S6K, not only in these cell lines, regardless of disease subtypes, but also in all 25 patient-derived B lymphoma cells of various disease subtypes. At the molecular level, TAS0612 caused significant downregulation of MYC and mTOR target genes while inducing the tumor suppressor TP53INP1 protein in these cell lines. These results prove that the simultaneous blockade of RSK2, AKT, and S6K, which are the pivotal downstream substrates of PDPK1, is a novel therapeutic target for the various disease subtypes of BCLs and line up TAS0612 as an attractive candidate agent for BCLs for future clinical development.
Collapse
Affiliation(s)
- Yoko Katsuragawa‐Taminishi
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Shinsuke Mizutani
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Yuka Kawaji‐Kanayama
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Akio Onishi
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Haruya Okamoto
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Reiko Isa
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Kentaro Mizuhara
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Ayako Muramatsu
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Takahiro Fujino
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Taku Tsukamoto
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Yuji Shimura
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
- Department of Blood TransfusionKyoto Prefectural University of MedicineKyotoJapan
| | - Masafumi Taniwaki
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | | | - Eiichi Konishi
- Department of Surgical PathologyKyoto Prefectural University of MedicineKyotoJapan
| | - Junya Kuroda
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
10
|
Tang P, Zhou J, Liu H, Mei S, Wang K, Ming H. Depletion of lncRNA MEG3 Ameliorates Imatinib-Induced Injury of Cardiomyocytes via Regulating miR-129-5p/HMGB1 Axis. Anal Cell Pathol (Amst) 2023; 2023:1108280. [PMID: 38028435 PMCID: PMC10673670 DOI: 10.1155/2023/1108280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Imatinib is a classical targeted drug to treat chronic myeloid leukemia (CML). However, it shows cardiotoxicity, which limits its clinical application. Long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) shows proapoptotic properties in human cells. This study is performed to investigate whether targeting MEG3 can attenuate imatinib-mediated cardiotoxicity to cardiomyocytes. In this work, H9c2 cells were divided into four groups: control group, hypoxia group, hypoxia + imatinib, and hypoxia + imatinib + MEG3 knockdown group. MEG3 and microRNA-129-5p (miR-129-5p) expression levels were detected by the quantitative real-time PCR (qRT-PCR). The viability and apoptosis of H9c2 cells were then evaluated by cell counting kit-8 (CCK-8), flow cytometry, and TUNEL assays. The targeting relationships between MEG3 and miR-129-5p, between miR-129-5p and high-mobility group box 1 (HMBG1), were validated by dual-luciferase reporter assay and RNA Immunoprecipitation (RIP) assay. The protein expression level of HMGB1 was detected by western blot. It was revealed that, Imatinib-inhibited cell viability and aggravated the apoptosis of H9c2 cells cultured in hypoxic condition, and MEG3 knockdown significantly counteracted this effect. MiR-129-5p was a downstream target of MEG3 and it directly targeted HMGB1, and knockdown of MEG3 inhibited HMGB1 expression in H9c2 cells. In conclusion, targeting MEG3 ameliorates imatinib-induced injury of cardiomyocytes via regulating miR-129-5p/HMGB1 axis.
Collapse
Affiliation(s)
- Peng Tang
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jinjian Zhou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Huagang Liu
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Shenglan Mei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Kai Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Hao Ming
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|