1
|
Guesmi F, Tahri W, Mehrez A, Barkaoui T, Prasad S, Giuffrè AM, Landoulsi A. Colorectal carcinoma cell targeting aromatherapy with Teucrium ramosissimum essential oil to sensitize TRAIL/Apo2L-induced HCT-116 cell death. Int Immunopharmacol 2024; 136:112405. [PMID: 38850792 DOI: 10.1016/j.intimp.2024.112405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/14/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
This report drives insights for the investigation of the underlying mechanisms of antitumor effects of Teucrium ramosissimum (TrS) essential oil (EO) that elicits colon tumor protection via activation of cell death machinery. A study of the aerial part phytocomplex was performed by FTIR spectra and GC/MS. In vivo colon carcinogenesis induced by LPS was carried out using mouse model. HCT-116 cells were coincubated with TrS EO and TRAIL-resistant cancer cells, and then cell lysates were assessed using Western blotting technique for death and decoy receptor expression. TrS essential oil potentiates TRAIL-mediated apoptosis cell death of HCT-116 as detected by PARP cleavage and caspase activation. Further data suggest that TrS up-regulates DR 5/4 expression, and down-regulates DcRs expression. Additionally, TrS potentiates apoptosis in TRAIL-resistant tumor cells through induction of MAPK signalling components, including ERK, p38 kinase, JNK, and activation of CHOP, and SP1, involved in DR5 expression. Moreover, Teucrium EO phytoconstituents mediate HCT-116 cells apoptosis by evoking cell cycle arrest at the G1 and G2/M phase through diminishing the expression of cyclin D1 acting as a potent multitargeted factors of inhibition of JAK/STAT oncogenic signaling pathway. These results demonstrate that TRAIL-induced apoptosis enhancing effect of TrS mediated through proto-oncogene expression in HCT-116. TrS administered intragastrically is able to prevent tumor of colon by stopping carcinogenesis process and impede tumor cell growth in in vivo analysis promoted by LPS. On the whole, our results revealed that TrS is an effective antitcancer agent through the induction of transcription factor and kinases, either are needed to trigger Apo2L receptors.
Collapse
Affiliation(s)
- Fatma Guesmi
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Unit UR03ES06, Faculty of Sciences of Bizerte, University of Carthage, Tunisia; Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | - Wiem Tahri
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Unit UR03ES06, Faculty of Sciences of Bizerte, University of Carthage, Tunisia
| | - Amel Mehrez
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Unit UR03ES06, Faculty of Sciences of Bizerte, University of Carthage, Tunisia
| | - Taha Barkaoui
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Unit UR03ES06, Faculty of Sciences of Bizerte, University of Carthage, Tunisia
| | - Sahdeo Prasad
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Research and Development, Noble Pharma LLC, Menomonie, WI 54751, USA
| | - Angelo Maria Giuffrè
- Department AGRARIA, University of Studies "Mediterranea" of Reggio Calabria, Via dell'Università, 25 - 89124 Reggio Calabria, Italy.
| | - Ahmed Landoulsi
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Unit UR03ES06, Faculty of Sciences of Bizerte, University of Carthage, Tunisia
| |
Collapse
|
2
|
Figueira MI, Carvalho TMA, Macário-Monteiro J, Cardoso HJ, Correia S, Vaz CV, Duarte AP, Socorro S. The Pros and Cons of Estrogens in Prostate Cancer: An Update with a Focus on Phytoestrogens. Biomedicines 2024; 12:1636. [PMID: 39200101 PMCID: PMC11351860 DOI: 10.3390/biomedicines12081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
The role of estrogens in prostate cancer (PCa) is shrouded in mystery, with its actions going from angelic to devilish. The findings by Huggins and Hodges establishing PCa as a hormone-sensitive cancer have provided the basis for using estrogens in therapy. However, despite the clinical efficacy in suppressing tumor growth and the panoply of experimental evidence describing its anticarcinogenic effects, estrogens were abolished from PCa treatment because of the adverse secondary effects. Notwithstanding, research work over the years has continued investigating the effects of estrogens, reporting their pros and cons in prostate carcinogenesis. In contrast with the beneficial therapeutic effects, many reports have implicated estrogens in the disruption of prostate cell fate and tissue homeostasis. On the other hand, epidemiological data demonstrating the lower incidence of PCa in Eastern countries associated with a higher consumption of phytoestrogens support the beneficial role of estrogens in counteracting cancer development. Many studies have investigated the effects of phytoestrogens and the underlying mechanisms of action, which may contribute to developing safe estrogen-based anti-PCa therapies. This review compiles the existing data on the anti- and protumorigenic actions of estrogens and summarizes the anticancer effects of several phytoestrogens, highlighting their promising features in PCa treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sílvia Socorro
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (M.I.F.)
| |
Collapse
|
3
|
Sofi FA, Tabassum N. Natural product inspired leads in the discovery of anticancer agents: an update. J Biomol Struct Dyn 2023; 41:8605-8628. [PMID: 36255181 DOI: 10.1080/07391102.2022.2134212] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/03/2022] [Indexed: 10/24/2022]
Abstract
Natural products have emerged as major leads for the discovery and development of new anti-cancer drugs. The plant-derived anti-cancer drugs account for approximately 60% and the quest for new anti-cancer agents is in progress. Anti-cancer leads have been isolated from plants, animals, marine organisms, and microorganisms from time immemorial. The process of semisynthetic modifications of the parent lead has led to the generation of new anti-cancer agents with improved therapeutic efficacy and minimal side effects. The various chemo-informatics tools, bioinformatics, high-throughput screening, and combinatorial synthesis are able to deliver the new natural product lead molecules. Plant-derived anticancer agents in either late preclinical development or early clinical trials include taxol, vincristine, vinblastine, topotecan, irinotecan, etoposide, paclitaxel, and docetaxel. Similarly, anti-cancer agents from microbial sources include dactinomycin, bleomycin, mitomycin C, and doxorubicin. In this review, we highlighted the importance of natural products leads in the discovery and development of novel anti-cancer agents. The semisynthetic modifications of the parent lead to the new anti-cancer agent are also presented. Further, the leads in the preclinical settings with the potential to become effective anticancer agents are also reviewed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Firdoos Ahmad Sofi
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| |
Collapse
|
4
|
Gunther JR, Chadha AS, Guha S, Raju GS, Maru DM, Munsell MF, Jiang Y, Yang P, Felix E, Clemons M, Mathew GG, Singh PK, Skibber JM, Rodriguez-Bigas MA, Chang GJ, Eng C, Delclos ME, Crane CH, Das P, Krishnan S. A phase II randomized double blinded trial evaluating the efficacy of curcumin with pre-operative chemoradiation for rectal cancer. J Gastrointest Oncol 2022; 13:2938-2950. [PMID: 36636059 PMCID: PMC9830363 DOI: 10.21037/jgo-22-259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background In vivo studies demonstrate that curcumin increases radioresponse of colorectal cancers. To demonstrate efficacy in humans, we performed a randomized double-blind study of locally advanced rectal cancer (LARC) patients receiving pre-operative chemoradiation therapy (CRT) ± curcumin. We used pathologic complete response (pCR) rate as a surrogate for clinical outcome. Methods From 2008-2010, LARC patients were randomized to placebo/curcumin in a 1:2 ratio. Patients received CRT [50.4 gray in 28 fractions; capecitabine (825 mg/m2 twice daily)] followed by surgery. Curcumin (4 grams orally, twice daily) or placebo was given throughout CRT and 6 weeks afterward. Toxicity was monitored weekly. Blood samples taken pre- and 1-hour post-ingestion and tissue biopsies (both collected at CRT week 2) were analyzed for pharmacokinetics. The primary outcome was surgical pCR rate. Results Of 22 enrolled patients, 15 received curcumin. Median age was 61 years and the majority were male (n=13; 59%). The median serum curcumin concentrations before (3.04 ng/mL; range, 1.24-18.88 ng/mL) and 1 hour after (3.32 ng/mL; range, 0.84-5.36 ng/mL) curcumin intake did not differ significantly (P=0.33). Serum curcumin concentrations both increased and decreased 1-hour post-administration (range as percentage of baseline: 8.8-258.1%). Twelve curcumin patient tissue biopsies had median curcumin concentration of 33.7 ng/mg tissue (range, 0.1-4,765.7 ng/mg). Two placebo and 1 curcumin patient achieved pCRs (P=0.18). One grade 3 toxicity (infection) was experienced. Conclusions The addition of curcumin to CRT did not increase pCR rates for LARC patients. The unpredictable bioavailability of curcumin contributes to continued uncertainties regarding curcumin efficacy. Trial Registration ClinicalTrials.gov identifier: NCT00745134.
Collapse
Affiliation(s)
- Jillian R. Gunther
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Awalpreet S. Chadha
- Department of Internal Medicine, The University of Alabama, Birmingham, AL, USA
| | - Sushovan Guha
- Division of Gastroenterology, Department of Medicine, University of Texas Medical School at Houston, Houston, TX, USA
| | - Gottumukkala S. Raju
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Dipen M. Maru
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark F. Munsell
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yan Jiang
- Department of Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peiying Yang
- Department of Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edd Felix
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marilyn Clemons
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Geena George Mathew
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pankaj K. Singh
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - John M. Skibber
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miguel A. Rodriguez-Bigas
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George J. Chang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cathy Eng
- Department of Medical Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marc E. Delclos
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher H. Crane
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prajnan Das
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sunil Krishnan
- Vivian L. Smith Department of Neurosurgery, UT Health Science Center, Houston, TX, USA
| |
Collapse
|
5
|
Abdualmjid RJ, Sergi CM. Mitochondrial Dysfunction and Induction of Apoptosis in Hepatocellular Carcinoma and Cholangiocarcinoma Cell Lines by Thymoquinone. Int J Mol Sci 2022; 23:ijms232314669. [PMID: 36498999 PMCID: PMC9737800 DOI: 10.3390/ijms232314669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Thymoquinone (TQ), a plant-based bioactive constituent derived from the volatile oil of Nigella sativa, has been shown to possess some anti-neoplastic activities. The present study aimed to investigate the mitochondria and apoptosis observed when TQ is applied against hepatocellular carcinoma (HepG2) and cholangiocarcinoma (HuCCT1) cells, two of the most common primary tumors of the liver. All cell lines were treated with increasing concentrations of TQ for varying durations. The anti-proliferative effect of TQ was measured using the methoxyphenyl-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and resulted in dose- and time-dependent growth inhibition in both cell lines. Cell cycle, apoptosis, and assessment of mitochondria viability by morphology assessment and evaluation of the mitochondrial membrane potential were investigated. The present study confirms that TQ caused cell cycle arrest at different phases and induced apoptosis in both cell lines. A systematic review of rodent animal models was also carried out. Overall, our data seem to represent the most robust results, suggesting that TQ possesses promising therapeutic potential as an anti-tumor agent for the treatment of hepatocellular carcinoma and cholangiocarcinoma.
Collapse
Affiliation(s)
- Reem J. Abdualmjid
- Department of Lab. Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Consolato M. Sergi
- Department of Lab. Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Anatomic Pathology, Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Correspondence: ; Tel.: +1-613-737-7600 (ext. 2427); Fax: +1-613-738-4837
| |
Collapse
|
6
|
Gao Q, Feng J, Liu W, Wen C, Wu Y, Liao Q, Zou L, Sui X, Xie T, Zhang J, Hu Y. Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment. Adv Drug Deliv Rev 2022; 188:114445. [PMID: 35820601 DOI: 10.1016/j.addr.2022.114445] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 02/08/2023]
Abstract
The therapeutic limitations such as insufficient efficacy, drug resistance, metastasis, and undesirable side effects are frequently caused by the long duration monotherapy based on chemotherapeutic drugs. multiple combinational anticancer strategies such as nucleic acids combined with chemotherapeutic agents, chemotherapeutic combinations, chemotherapy and tumor immunotherapy combinations have been embraced, holding great promise to counter these limitations, while still taking including some potential risks. Nowadays, an increasing number of research has manifested the anticancer effects of phytochemicals mediated by modulating cancer cellular events directly as well as the tumor microenvironment. Specifically, these natural compounds exhibited suppression of cancer cell proliferation, apoptosis, migration and invasion of cancer cells, P-glycoprotein inhibition, decreasing vascularization and activation of tumor immunosuppression. Due to the low toxicity and multiple modulation pathways of these phytochemicals, the combination of chemotherapeutic agents with natural compounds acts as a novel approach to cancer therapy to increase the efficiency of cancer treatments as well as reduce the adverse consequences. In order to achieve the maximized combination advantages of small-molecule chemotherapeutic drugs and natural compounds, a variety of functional nano-scaled drug delivery systems, such as liposomes, host-guest supramolecules, supramolecules, dendrimers, micelles and inorganic systems have been developed for dual/multiple drug co-delivery. These co-delivery nanomedicines can improve pharmacokinetic behavior, tumor accumulation capacity, and achieve tumor site-targeting delivery. In that way, the improved antitumor effects through multiple-target therapy and reduced side effects by decreasing dose can be implemented. Here, we present the synergistic anticancer outcomes and the related mechanisms of the combination of phytochemicals with small-molecule anticancer drugs. We also focus on illustrating the design concept, and action mechanisms of nanosystems with co-delivery of drugs to synergistically improve anticancer efficacy. In addition, the challenges and prospects of how these insights can be translated into clinical benefits are discussed.
Collapse
Affiliation(s)
- Quan Gao
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jiao Feng
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Wencheng Liu
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chengyong Wen
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China
| | - Xinbing Sui
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Tian Xie
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China.
| |
Collapse
|
7
|
Rahmati A, Homayouni Tabrizi M, Karimi E, Zarei B. Fabrication and assessment of folic acid conjugated-chitosan modified PLGA nanoparticle for delivery of alpha terpineol in colon cancer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1289-1307. [PMID: 35260045 DOI: 10.1080/09205063.2022.2051693] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The objective of this study was to fabrication of α-terpineol-PLGA nanoparticles coated with folic acid-chitosan (αT-PCF-NPs) as well as evaluates their anticancer effects. αT-PCF-NPs were synthesized using the nanoprecipitation method and characterized by Dynamic light scattering (DLS), zeta potential (ZP), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) analysis. Folic acid (FA) binding rate and entrapment efficiency of α-T were assessed by HPLC method. MTT assay was performed for cytotoxicity assessment. Quantitative polymerase chain reaction (qPCR) analysis, acridine orange and propodium iodide (AO/PI) staining and cell cycle analysis were done to assess the pro-apoptotic properties of αT-PCF-NPs. Molecular analysis for angiogenesis and antioxidant properties and murine colon cancer model for antitumor effects of αT-PCF-NPs were used. The % FA-binding and encapsulation efficiency of α-T in αT-PCF-NPs (particle size of 263.95 nm, polydispersity index (PDI) of 0.25, and surface charge of +38.20 mV) was reported to be 67% and 88.1% respectively. The higher inhibitory effect of αT-PCF-NPs on cancer cells compared to HFF cells was confirmed. The pro-apoptotic effect of αT-PCF-NPs was showed by increased SubG1 phase cells, AO/PI staining results and up and down regulation Bax and Bcl-2 as pro and anti-apoptotic genes in HT-29 cells. Antioxidant (SOD) and angiogenesis genes (VEGF and VEGF-R) were inhibited by αT-PCF-NPs exposure in HT-29 cells and also decreased the size of murine tumors was confirmed in exposure of αT-PCF-NPs. αT-PCF-NPs can be considered as a promising anticancer drug for colon cancer.
Collapse
Affiliation(s)
- Amir Rahmati
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Bahar Zarei
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
8
|
Lin ZY, Yun QZ, Wu L, Zhang TW, Yao TZ. Pharmacological basis and new insights of deguelin concerning its anticancer effects. Pharmacol Res 2021; 174:105935. [PMID: 34644595 DOI: 10.1016/j.phrs.2021.105935] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
Deguelin is a rotenoid of the flavonoid family, which can be extracted from Lonchocarpus, Derris, or Tephrosia. It possesses the inhibition of cancer cell proliferation by inducing apoptosis through regulating the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, the NF-κB signaling pathway, the Wnt signaling pathway, the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway and epidermal growth factor receptor (EGFR) signaling, activating the p38 mitogen-activated protein kinase (MAPK) pathway, repression of Bmi1, targeting cyclooxygenase-2 (COX-2), targeting galectin-1, promotion of glycogen synthase kinase-3β (GSK3β)/FBW7-mediated Mcl-1 destabilization and targeting mitochondria via down-regulating Hexokinases II-mediated glycolysis, PUMA-mediation, which are some crucial molecules which modulate closely cancer cell growth and metastasis. Deguelin inhibits tumor cell propagation and malignant transformation through targeting angiogenesis, targeting lymphangiogenesis, targeting focal adhesion kinase (FAK), inhibiting the CtsZ/FAK signaling pathway, targeting epithelial-mesenchymal transition (EMT), the NF-κB signaling pathway, regulating NIMA-related kinase 2 (NEK2). In addition, deguelin possesses other biological activities, such as targeting cell cycle arrest, modulation of autophagy, inhibition of hedgehog pathway, inducing differentiation of mutated NPM1 acute myeloid leukemia etc. Therefore, deguelin is a promising chemopreventive agent for cancer therapy.
Collapse
Affiliation(s)
- Zhu Yue Lin
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Qu Zhen Yun
- Pathophysiology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Liu Wu
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China; Pathophysiology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Tian Wen Zhang
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China; Pathophysiology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Tang Ze Yao
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China.
| |
Collapse
|
9
|
Bischoff-Kont I, Fürst R. Benefits of Ginger and Its Constituent 6-Shogaol in Inhibiting Inflammatory Processes. Pharmaceuticals (Basel) 2021; 14:ph14060571. [PMID: 34203813 PMCID: PMC8232759 DOI: 10.3390/ph14060571] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022] Open
Abstract
Ginger (Zingiber officinale Roscoe) is widely used as medicinal plant. According to the Committee on Herbal Medicinal Products (HMPC), dried powdered ginger rhizome can be applied for the prevention of nausea and vomiting in motion sickness (well-established use). Beyond this, a plethora of pre-clinical studies demonstrated anti-cancer, anti-oxidative, or anti-inflammatory actions. 6-Shogaol is formed from 6-gingerol by dehydration and represents one of the main bioactive principles in dried ginger rhizomes. 6-Shogaol is characterized by a Michael acceptor moiety being reactive with nucleophiles. This review intends to compile important findings on the actions of 6-shogaol as an anti-inflammatory compound: in vivo, 6-shogaol inhibited leukocyte infiltration into inflamed tissue accompanied with reduction of edema swelling. In vitro and in vivo, 6-shogaol reduced inflammatory mediator systems such as COX-2 or iNOS, affected NFκB and MAPK signaling, and increased levels of cytoprotective HO-1. Interestingly, certain in vitro studies provided deeper mechanistic insights demonstrating the involvement of PPAR-γ, JNK/Nrf2, p38/HO-1, and NFκB in the anti-inflammatory actions of the compound. Although these studies provide promising evidence that 6-shogaol can be classified as an anti-inflammatory substance, the exact mechanism of action remains to be elucidated. Moreover, conclusive clinical data for anti-inflammatory actions of 6-shogaol are largely lacking.
Collapse
Affiliation(s)
- Iris Bischoff-Kont
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, 60438 Frankfurt, Germany;
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, 60438 Frankfurt, Germany;
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
- Correspondence:
| |
Collapse
|
10
|
Synergistic anticancer effects of phycocyanin and Citrullus colocynthis extract against WiDr, HCT-15 and HCT-116 colon cancer cell lines. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2020.100972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Aquila G, Re Cecconi AD, Brault JJ, Corli O, Piccirillo R. Nutraceuticals and Exercise against Muscle Wasting during Cancer Cachexia. Cells 2020; 9:E2536. [PMID: 33255345 PMCID: PMC7760926 DOI: 10.3390/cells9122536] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cachexia (CC) is a debilitating multifactorial syndrome, involving progressive deterioration and functional impairment of skeletal muscles. It affects about 80% of patients with advanced cancer and causes premature death. No causal therapy is available against CC. In the last few decades, our understanding of the mechanisms contributing to muscle wasting during cancer has markedly increased. Both inflammation and oxidative stress (OS) alter anabolic and catabolic signaling pathways mostly culminating with muscle depletion. Several preclinical studies have emphasized the beneficial roles of several classes of nutraceuticals and modes of physical exercise, but their efficacy in CC patients remains scant. The route of nutraceutical administration is critical to increase its bioavailability and achieve the desired anti-cachexia effects. Accumulating evidence suggests that a single therapy may not be enough, and a bimodal intervention (nutraceuticals plus exercise) may be a more effective treatment for CC. This review focuses on the current state of the field on the role of inflammation and OS in the pathogenesis of muscle atrophy during CC, and how nutraceuticals and physical activity may act synergistically to limit muscle wasting and dysfunction.
Collapse
Affiliation(s)
- Giorgio Aquila
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Andrea David Re Cecconi
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Jeffrey J. Brault
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Oscar Corli
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
- Oncology Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy
| | - Rosanna Piccirillo
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| |
Collapse
|
12
|
Ahsan A, Farooq MA, Ahsan Bajwa A, Parveen A. Green Synthesis of Silver Nanoparticles Using Parthenium Hysterophorus: Optimization, Characterization and In Vitro Therapeutic Evaluation. Molecules 2020; 25:molecules25153324. [PMID: 32707950 PMCID: PMC7435648 DOI: 10.3390/molecules25153324] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 01/31/2023] Open
Abstract
Traditional synthetic techniques for silver nanoparticles synthesis involve toxic chemicals that are harmful to humans as well as the environment. The green chemistry method for nanoparticle synthesis is rapid, eco-friendly, and less toxic as compared to the traditional methods. In the present research, we synthesized silver nanoparticles employing a green chemistry approach from Parthenium hysterophorus leaf extract. The optimized parthenium silver nanoparticles (PrSNPs) had a mean particle size of 187.87 ± 4.89 nm with a narrow size distribution of 0.226 ± 0.009 and surface charge −34 ± 3.12 mV, respectively. The physicochemical characterization of optimized SNPs was done by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Moreover, the transmission electron microscopy (TEM) analysis indicates the spherical shape of NPs with an average diameter of 20–25 nm. PrSNPs were investigated for in vitro antibacterial, antifungal, anti-inflammatory, and antioxidant properties, and showed excellent profiles. The cytotoxic activity was analyzed against two cancer cell lines, i.e., B16F10 and HepG2 for 24 h and 48 h. PrSNPs proved to be an excellent anticancer agent. These PrSNPs were also employed for the treatment of wastewater by monitoring the E. coli count, and it turned out to be reduced by 58%; hence these NPs could be used for disinfecting water. Hence, we can propose that PrSNPs could be a suitable candidate as an antimicrobial, antioxidant, anti-inflammatory, and antitumor agent for the treatment of several ailments.
Collapse
Affiliation(s)
- Anam Ahsan
- College of Animal Science & Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China;
| | - Muhammad Asim Farooq
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 211100 Nanjing, China;
| | - Ali Ahsan Bajwa
- Weeds Research Unit, New South Wales Department of Primary Industries, Wagga Wagga, NSW 2650, Australia;
| | - Amna Parveen
- College of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu Incheon 406–799, Korea
- Correspondence: ; Tel.: +82-10-5925-2733
| |
Collapse
|
13
|
Khatoon E, Banik K, Harsha C, Sailo BL, Thakur KK, Khwairakpam AD, Vikkurthi R, Devi TB, Gupta SC, Kunnumakkara AB. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. Semin Cancer Biol 2020; 80:306-339. [DOI: 10.1016/j.semcancer.2020.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
|
14
|
An Overview of the Potential Antineoplastic Effects of Casticin. Molecules 2020; 25:molecules25061287. [PMID: 32178324 PMCID: PMC7144019 DOI: 10.3390/molecules25061287] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer persists as one of the leading causes of deaths worldwide, contributing to approximately 9.6 million deaths per annum in recent years. Despite the numerous advancements in cancer treatment, there is still abundant scope to mitigate recurrence, adverse side effects and toxicities caused by existing pharmaceutical drugs. To achieve this, many phytochemicals from plants and natural products have been tested against cancer cell lines in vivo and in vitro. Likewise, casticin, a flavonoid extracted from the Vitex species, has been isolated from the leaves and seeds of V. trifolia and V. agnus-castus. Casticin possesses a wide range of therapeutic properties, including analgesic, anti-inflammatory, antiangiogenic, antiasthmatic and antineoplastic activities. Several studies have been conducted on the anticancer effects of casticin against cancers, including breast, bladder, oral, lung, leukemia and hepatocellular carcinomas. The compound inhibits invasion, migration and proliferation and induces apoptosis (casticin-induced, ROS-mediated and mitochondrial-dependent) and cell cycle arrest (G0/G1, G2/M, etc.) through different signaling pathways, namely the PI3K/Akt, NF-κB, STAT3 and FOXO3a/FoxM1 pathways. This review summarizes the chemo-preventive ability of casticin as an antineoplastic agent against several malignancies.
Collapse
|
15
|
Naz I, Ramchandani S, Khan MR, Yang MH, Ahn KS. Anticancer Potential of Raddeanin A, a Natural Triterpenoid Isolated from Anemone raddeana Regel. Molecules 2020; 25:E1035. [PMID: 32106609 PMCID: PMC7179125 DOI: 10.3390/molecules25051035] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
Natural compounds extracted from plants have gained immense importance in the fight against cancer cells due to their lesser toxicity and potential therapeutic effects. Raddeanin A (RA), an oleanane type triterpenoid is a major compound isolated from Anemone raddeana Regel. As an anticancer agent, RA induces apoptosis, cell cycle arrest, inhibits invasion, migration and angiogenesis in malignant cell lines as well as in preclinical models. In this systemic review, the pharmacological effects of RA and its underlying molecular mechanisms were carefully analyzed and potential molecular targets have been highlighted. The apoptotic potential of RA can be mediated through the modulation of Bcl-2, Bax, caspase-3, caspase-8, caspase-9, cytochrome c and poly-ADP ribose polymerase (PARP) cleavage. PI3K/Akt signaling pathway serves as the major molecular target affected by RA. Furthermore, RA can block cell proliferation through inhibition of canonical Wnt/β-catenin signaling pathway in colorectal cancer cells. RA can also alter the activation of NF-κB and STAT3 signaling pathways to suppress invasion and metastasis. RA has also exhibited promising anticancer potential against drug resistant cancer cells and can enhance the anticancer effects of several chemotherapeutic agents. Overall, RA may function as a promising compound in combating cancer, although further in-depth study is required under clinical settings to validate its efficacy in cancer patients.
Collapse
Affiliation(s)
- Irum Naz
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | | | | | - Min Hee Yang
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea;
| | - Kwang Seok Ahn
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea;
| |
Collapse
|
16
|
Ciric A, Krajnc B, Heath D, Ogrinc N. Response surface methodology and artificial neural network approach for the optimization of ultrasound-assisted extraction of polyphenols from garlic. Food Chem Toxicol 2019; 135:110976. [PMID: 31743742 DOI: 10.1016/j.fct.2019.110976] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/24/2022]
Abstract
This paper aimed to establish the optimal conditions for ultrasound-assisted extraction of polyphenols from domestic garlic (Allium sativum L.) using response surface methodology (RSM) and artificial neural network (ANN) approach. A 4-factor-3-level central composite design was used to optimize ultrasound-assisted extraction (UAE) to obtain a maximum yield of target responses. Maximum values of the two output parameters: 19.498 mg GAE/g fresh weight of sample total phenolic content and 1.422 mg RUT/g fresh weight of sample total flavonoid content were obtained under optimum extraction conditions: 13.50 min X1, 59.00 °C X2, 71.00% X3 and 20.00 mL/g X4. Root mean square error for training, validation, and testing were 0.0209, 3.6819 and 1.8341, respectively. The correlation coefficient between experimentally obtained total phenolic content and total flavonoid content and values predicted by ANN were 0.9998 for training, 0.9733 for validation, and 0.9821 for testing, indicating the good predictive ability of the model. The ANN model had a higher prediction efficiency than the RSM model. Hence, RSM can demonstrate the interaction effects of basic inherent UAE parameters on target responses, whereas ANN can reliably model the UAE process with better predictive and estimation capabilities.
Collapse
Affiliation(s)
- Andrija Ciric
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovica 12, 34000, Kragujevac, Serbia; Department of Environmental Science, Jožef Stefan Institute, Jamova cesta 39, SI-1000, Ljubljana, Slovenia.
| | - Bor Krajnc
- Department of Environmental Science, Jožef Stefan Institute, Jamova cesta 39, SI-1000, Ljubljana, Slovenia
| | - David Heath
- Department of Environmental Science, Jožef Stefan Institute, Jamova cesta 39, SI-1000, Ljubljana, Slovenia
| | - Nives Ogrinc
- Department of Environmental Science, Jožef Stefan Institute, Jamova cesta 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
17
|
Sharifi-Rad J, Ozleyen A, Boyunegmez Tumer T, Oluwaseun Adetunji C, El Omari N, Balahbib A, Taheri Y, Bouyahya A, Martorell M, Martins N, Cho WC. Natural Products and Synthetic Analogs as a Source of Antitumor Drugs. Biomolecules 2019; 9:E679. [PMID: 31683894 PMCID: PMC6920853 DOI: 10.3390/biom9110679] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer is a heterogeneous disease and one of the major issues of health concern, especially for the public health system globally. Nature is a source of anticancer drugs with abundant pool of diverse chemicals and pharmacologically active compounds. In recent decade, some natural products and synthetic analogs have been investigated for the cancer treatment. This article presents the utilization of natural products as a source of antitumor drugs.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| | - Adem Ozleyen
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey.
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey.
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University, Iyamho, Edo State 300271, Nigeria.
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10100, Morocco.
| | - Abdelaali Balahbib
- Laboratory of Zoology and General Biology, Faculty of Sciences, Mohammed V University, Rabat 10106, Morocco.
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10106, Morocco.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile.
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepcion 4070386, Chile.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China.
| |
Collapse
|
18
|
Human disorders associated with inflammation and the evolving role of natural products to overcome. Eur J Med Chem 2019; 179:272-309. [PMID: 31255927 DOI: 10.1016/j.ejmech.2019.06.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022]
Abstract
Inflammation is a biological function which triggered after the mechanical tissue disruption or from the responses by the incidence of physical, chemical or biological negotiator in body. These responses are essential act provided by the immune system during infection and tissue injury to maintain normal tissue homeostasis. Inflammation is a quite complicated process at molecular level with the involvement of several proinflammatory expressions. Several health problems are associated with prolonged inflammation, which effects nearly all major to minor diseases. The molecular and epidemiological studies jagged that the inflammation is closely associated with several disorders with their specific targets. It would be great achievement for human health around the world to overcome on inflammation. Mostly used anti-inflammatory drugs are at high risk of side effects and also expensive. Hence, the plant-based formulations gained a wide acceptance by the public and medical experts to treat it. Due to extensive dispersal, chemical diversity and systematically established biological potentials of natural products have induced renewed awareness as a gifted source for medications. However, today's urgent need to search for cheaper, more potent and safe anti-inflammatory medications to overcome on current situation. The goal of this review to compile an update on inflammation, associated diseases, molecular targets, inflammatory mediators and role of natural products. The entire text concise the involvement of various cytokines in pathogenesis of various human disorders. This assignment discussed about 321 natural products with their promising anti-inflammatory potential discovered during January 2009 to December 2018 with 262 citations.
Collapse
|
19
|
Girisa S, Shabnam B, Monisha J, Fan L, Halim CE, Arfuso F, Ahn KS, Sethi G, Kunnumakkara AB. Potential of Zerumbone as an Anti-Cancer Agent. Molecules 2019; 24:molecules24040734. [PMID: 30781671 PMCID: PMC6413012 DOI: 10.3390/molecules24040734] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 12/26/2022] Open
Abstract
Cancer is still a major risk factor to public health globally, causing approximately 9.8 million deaths worldwide in 2018. Despite advances in conventional treatment modalities for cancer treatment, there are still few effective therapies available due to the lack of selectivity, adverse side effects, non-specific toxicities, and tumour recurrence. Therefore, there is an immediate need for essential alternative therapeutics, which can prove to be beneficial and safe against cancer. Various phytochemicals from natural sources have been found to exhibit beneficial medicinal properties against various human diseases. Zerumbone is one such compound isolated from Zingiber zerumbet Smith that possesses diverse pharmacological properties including those of antioxidant, antibacterial, antipyretic, anti-inflammatory, immunomodulatory, as well as anti-neoplastic. Zerumbone has shown its anti-cancer effects by causing significant suppression of proliferation, survival, angiogenesis, invasion, and metastasis through the molecular modulation of different pathways such as NF-κB, Akt, and IL-6/JAK2/STAT3 (interleukin-6/janus kinase-2/signal transducer and activator of transcription 3) and their downstream target proteins. The current review briefly summarizes the modes of action and therapeutic potential of zerumbone against various cancers.
Collapse
Affiliation(s)
- Sosmitha Girisa
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India.
| | - Bano Shabnam
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India.
| | - Javadi Monisha
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India.
| | - Lu Fan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Clarissa Esmeralda Halim
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India.
| |
Collapse
|
20
|
Tham SY, Loh HS, Mai CW, Fu JY. Tocotrienols Modulate a Life or Death Decision in Cancers. Int J Mol Sci 2019; 20:E372. [PMID: 30654580 PMCID: PMC6359475 DOI: 10.3390/ijms20020372] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/05/2019] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Malignancy often arises from sophisticated defects in the intricate molecular mechanisms of cells, rendering a complicated molecular ground to effectively target cancers. Resistance toward cell death and enhancement of cell survival are the common adaptations in cancer due to its infinite proliferative capacity. Existing cancer treatment strategies that target a single molecular pathway or cancer hallmark fail to fully resolve the problem. Hence, multitargeted anticancer agents that can concurrently target cell death and survival pathways are seen as a promising alternative to treat cancer. Tocotrienols, a minor constituent of the vitamin E family that have previously been reported to induce various cell death mechanisms and target several key survival pathways, could be an effective anticancer agent. This review puts forward the potential application of tocotrienols as an anticancer treatment from a perspective of influencing the life or death decision of cancer cells. The cell death mechanisms elicited by tocotrienols, particularly apoptosis and autophagy, are highlighted. The influences of several cell survival signaling pathways in shaping cancer cell death, particularly NF-κB, PI3K/Akt, MAPK, and Wnt, are also reviewed. This review may stimulate further mechanistic researches and foster clinical applications of tocotrienols via rational drug designs.
Collapse
Affiliation(s)
- Shiau-Ying Tham
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Selangor, Malaysia.
| | - Hwei-San Loh
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Selangor, Malaysia.
- Biotechnology Research Centre, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Selangor, Malaysia.
| | - Chun-Wai Mai
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
| | - Ju-Yen Fu
- Nutrition Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia.
| |
Collapse
|
21
|
Imenshahidi M, Hosseinzadeh H. Berberine and barberry (Berberis vulgaris): A clinical review. Phytother Res 2019; 33:504-523. [DOI: 10.1002/ptr.6252] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/20/2018] [Accepted: 11/03/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute; Mashhad University of Medical Sciences; Mashhad Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
22
|
Jiang Z, Cao Q, Dai G, Wang J, Liu C, Lv L, Pan J. Celastrol inhibits colorectal cancer through TGF-β1/Smad signaling. Onco Targets Ther 2019; 12:509-518. [PMID: 30666129 PMCID: PMC6331187 DOI: 10.2147/ott.s187817] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND There are few clinical challenges associated with the treatment of colorectal cancer (CRC). Studies have shown that TGF-β plays a crucial role in CRC. Importantly, celastrol, a major components of the root extract of the traditional Chinese herb Tripterygium wilfordii Hook F, has been shown to inhibit the growth, adhesion, and metastasis of human CRC cells through the inhibition of TGF-β1/Smad signaling. MATERIALS AND METHODS Real-time PCR and Western blot tests were proceeded to present TGF-β1, TGF-β receptor type I (TGFβRI), TGF-β receptor type II (TGFβRII), Smad2/3, p-Smad2/3, Smad4, and glyceraldehyde-3-phosphate dehydrogenase expression in human colon cancer cell samples. RESULTS Our results indicated that celastrol can reduce the expression levels of TGF-β1, TGFβRI, and TGFβRII in HCT116 and SW620 cells. Furthermore, celastrol could also prevent the increase in Smad4 and p-Smad2/3 in HCT116 and SW620 cells. CONCLUSION Celastrol could inhibit tumor growth through TGF-β1/Smad signaling and might be a promising therapeutic component against CRC.
Collapse
Affiliation(s)
- Zhitao Jiang
- Department of Pharmacy Office, Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Qianyu Cao
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guoliang Dai
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianchun Wang
- Department of Pharmacy Office, Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Chundi Liu
- Department of Pharmacy Office, Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Lingyan Lv
- Department of Pharmacy Office, Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Jinhuo Pan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China,
| |
Collapse
|
23
|
Kumar S, Agnihotri N. Piperlongumine, a piper alkaloid targets Ras/PI3K/Akt/mTOR signaling axis to inhibit tumor cell growth and proliferation in DMH/DSS induced experimental colon cancer. Biomed Pharmacother 2019; 109:1462-1477. [PMID: 30551398 DOI: 10.1016/j.biopha.2018.10.182] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is the most common carcinoma of the digestive tract. The slow growing nature of CRC offers a great opportunity for prevention strategies. The concept of chemoprevention of colorectal cancer using plant derived natural products is gaining substantial attention because it is an inherently safe and cost-effective alternative to conventional cancer therapies. Piperlongumine (PL), a natural alkaloid present in Piper longum Linn has been reported to exhibit notable anticancer effects in various in vitro studies. Nonetheless, the chemopreventive potential of PL has not been studied in experimentally induced colon cancer yet. Ras/PI3K/Akt/mTOR signaling axis plays a central role in promoting tumor cell growth, proliferation and survival by inhibiting apoptosis. In the present study, we demonstrated, for the first time, the chemopreventive effects of PL in DMH + DSS induced colon carcinogenesis animal model. We showed that PL displayed potent antineoplastic activity against colon cancer cell growth by targeting Ras proteins and PI3K/Akt signaling cascade. PL mediated inhibition of tumor cell growth was associated with inhibition of Ras protein levels and its preferred companion protein PI3K levels that led to suppressed activity of Akt/NF-κB, c-Myc and cyclin D1. It was also found that PL arrested the cell cycle progression at G2/M phase and induced mitochondrial apoptotic pathway by downregulating Bcl-2 levels. Furthermore, the results of liver and kidney toxicity suggested that PL exhibit no toxicity in animals. Our results suggest that PL may be an effective chemopreventive agent for colon cancer.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Biochemistry Basic Medical Science Block-II Sector-25, South Campus, Panjab University, Chandigarh 160014, India.
| | - Navneet Agnihotri
- Department of Biochemistry Basic Medical Science Block-II Sector-25, South Campus, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
24
|
Guesmi F, Ben Hmed M, Prasad S, Tyagi AK, Landoulsi A. In vivo pathogenesis of colon carcinoma and its suppression by hydrophilic fractions of Clematis flammula via activation of TRAIL death machinery (DRs) expression. Biomed Pharmacother 2018; 109:2182-2191. [PMID: 30551475 DOI: 10.1016/j.biopha.2018.11.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/08/2018] [Accepted: 11/10/2018] [Indexed: 02/06/2023] Open
Abstract
This work focused on characterizing hydrophilic fractions of Clematis flammula (CFl). The data here clearly demonstrated that hydrolate fractions act as a free radical scavengers and inhibited proliferation of different cell lines in a time- and concentration-dependent manner, transwell, and with a significant cytotoxic effect. Treating cells with CFl had the effect of suppressing cell growth attenuated by ROS generation in colonic carcinoma. Moreover, CFl in HCT116 cells suppressed survival, proliferation, invasion, angiogenesis and metastasis in vitro by inhibiting gene expression. Following CFl treatment, caspases and PARP cleavage were detected. The up- and down-regulated genes obtained from the WBA of the effect of CFl showed that several biological processes were associated with apoptosis and induction of G1 cell cycle arrest. CFl synergizes the effect of TRAIL by down-regulating the expression of cell survival proteins involved in apoptosis compared to cells treated with CFl or TRAIL alone. Our findings showed that CFl sensitizes apoptosis in TRAIL-resistant cells by activating MAPKs, SP1, and CHOP, that induced DR5 expression. Overall, our data showed that CFl is a promising antitumor agent through kinases and transcription factor induction, both of which are required to activate TRAIL receptors. Colon inflammation induced by LPS was inhibited by CFl hydrolate.
Collapse
Affiliation(s)
- Fatma Guesmi
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA; Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Tunisia.
| | - Marwa Ben Hmed
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, 2112, Tunisia
| | - Sahdeo Prasad
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| | - Amit K Tyagi
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| | - Ahmed Landoulsi
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Tunisia
| |
Collapse
|
25
|
Guesmi F, Tyagi AK, Prasad S, Landoulsi A. Terpenes from essential oils and hydrolate of Teucrium alopecurus triggered apoptotic events dependent on caspases activation and PARP cleavage in human colon cancer cells through decreased protein expressions. Oncotarget 2018; 9:32305-32320. [PMID: 30190788 PMCID: PMC6122345 DOI: 10.18632/oncotarget.25955] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/29/2018] [Indexed: 12/20/2022] Open
Abstract
This study focused on characterizing the Hydrophobic and Hydrophilic fractions of Teucrium alopecurus in the context of cancer prevention and therapy. The goal was also to elucidate the molecular mechanisms involved and to determine its efficacy against cancer by triggering apoptosis and suppressing tumorigenesis in human colon cancer. The data here clearly demonstrated that oily fractions of Teucrium alopecurus act as free radical scavengers, antibacterial agent and inhibited the proliferation of HCT-116, U266, SCC4, Panc28, KBM5, and MCF-7 cells in a time- and concentration-dependent manner. The results of live/dead and colony formation assays further revealed that Teucrium essential oil has the efficacy to suppress the growth of colon carcinoma cells. In addition, essential oil of Teucrium alopecurus induced apoptosis, as indicated by cleavage of caspases-3, -8, and -9 and poly-adenosine diphosphate ribose polymerase. Moreover, Teucrium alopecurus essential oil suppressed gene expression involved in survival, proliferation, invasion, angiogenesis, and metastasis in human colon cancer cells. No sign of toxicity was detected in vivo after treatment with increasing concentrations of essential oil. Oral administration of T.alopecurus inhibited LPS-induced colon inflammation. This anticancer property of this specie Teucrium alopecurus fractions could be due to their phenolic and/or sesquiterpene content (d-limonene, α-Bisabolol, Humulene, Thymol, and (+)-epi-Bicyclosesquiphellandrene). Hence our study reveals the anticancer activity of Teucrium alopecurus oil mediated through the suppression of cell growth, cell proliferation, and the induction of apoptosis of cancer cells. Thus, it has potential to be developed as an anticancer agent; however more in vitro and in vivo studies are warranted.
Collapse
Affiliation(s)
- Fatma Guesmi
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Tunis, Tunisia
| | - Amit K Tyagi
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sahdeo Prasad
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ahmed Landoulsi
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Tunis, Tunisia
| |
Collapse
|
26
|
Montagnani Marelli M, Marzagalli M, Fontana F, Raimondi M, Moretti RM, Limonta P. Anticancer properties of tocotrienols: A review of cellular mechanisms and molecular targets. J Cell Physiol 2018; 234:1147-1164. [PMID: 30066964 DOI: 10.1002/jcp.27075] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022]
Abstract
Vitamin E is composed of two groups of compounds: α-, β-, γ-, and δ-tocopherols (TPs), and the corresponding unsaturated tocotrienols (TTs). TTs are found in natural sources such as red palm oil, annatto seeds, and rice bran. In the last decades, TTs (specifically, γ-TT and δ-TT) have gained interest due to their health benefits in chronic diseases, based on their antioxidant, neuroprotective, cholesterol-lowering, anti-inflammatory activities. Several in vitro and in vivo studies pointed out that TTs also exert a significant antitumor activity in a wide range of cancer cells. Specifically, TTs were shown to exert antiproliferative/proapoptotic effects and to reduce the metastatic or angiogenic properties of different cancer cells; moreover, these compounds were reported to specifically target the subpopulation of cancer stem cells, known to be deeply involved in the development of resistance to standard therapies. Interestingly, recent studies pointed out that TTs exert a synergistic antitumor effect on cancer cells when given in combination with either standard antitumor agents (i.e., chemotherapeutics, statins, "targeted" therapies) or natural compounds with anticancer activity (i.e., sesamin, epigallocatechin gallate (EGCG), resveratrol, ferulic acid). Based on these observations, different TT synthetic derivatives and formulations were recently developed and demonstrated to improve TT water solubility and to reduce TT metabolism in cancer cells, thus increasing their biological activity. These promising results, together with the safety of TT administration in healthy subjects, suggest that these compounds might represent a new chemopreventive or anticancer treatment (i.e., in combination with standard therapies) strategy. Clinical trials aimed at confirming this antitumor activity of TTs are needed.
Collapse
Affiliation(s)
- Marina Montagnani Marelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Roberta Manuela Moretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
27
|
Hsiao YT, Fan MJ, Huang AC, Lien JC, Lin JJ, Chen JC, Hsia TC, Wu RSC, Chung JG. Deguelin Impairs Cell Adhesion, Migration and Invasion of Human Lung Cancer Cells through the NF-[Formula: see text]B Signaling Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:209-229. [PMID: 29402127 DOI: 10.1142/s0192415x1850012x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Deguelin, a rotenoid, is isolated from a natural plant species, and has biological activities including antitumor function. In the present study, we investigated the effect of deguelin on the cell adhesion, migration and invasion of NCI-H292 human lung cancer cells in vitro. Cell viability was analyzed by using flow cytometer. Cell adhesion was determined by using the cell-matrix adhesion assay. Wound healing assay was used to examine cell migration. Cell migration and invasion were investigated using a Boyden chamber assay. The protein expression was measured by Western blotting and confocal laser microscopy. The electrophoretic mobility shift assay was used to measure NF-[Formula: see text]B p65 binding to DNA.We selected the concentrations of deguelin at 0, 0.5, 1.0, 1.5, 2.0 and 2.5[Formula: see text][Formula: see text]M and we found that those concentrations of deguelin did not induce significant cytotoxic effects on NCI-H292 cells. Thus, we selected those concentrations of deguelin for metastasis assay. We found that deguelin inhibited cell adhesion, migration and invasion in dose-dependent manners that was assayed by wound healing and transwell methods, respectively. Deguelin decreased the expression of MMP-2/-9, SOS 1, Rho A, p-AKT (Thr308), p-ERK1/2, p-p38, p-JNK, NF-[Formula: see text]B (p65) and uPA in NCI-H292 cells. Deguelin suppressed the expression of PI3K, SOS 1, NF-[Formula: see text]B (p65), but did not significantly affect PKC and Ras in the nuclei of NCI-H292 cells that were confirmed by confocal laser microscopy. We suggest that deguelin may be used as a novel anticancer metastasis of lung cancer in the future.
Collapse
Affiliation(s)
- Yung-Ting Hsiao
- * Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Ming-Jen Fan
- ¶ Department of Biotechnology, Asia University, Taichung, Taiwan
| | - An-Cheng Huang
- ∥ Department of Nursing, St. Mary's Junior College of Medicine, Nursing and Management, Yilan County, Taiwan
| | - Jin-Cherng Lien
- † School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Jen-Jyh Lin
- ** Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Jaw-Chyun Chen
- §§ Department of Medicinal Botany and Health Applications, Da-Yeh University, Changhua, Taiwan
| | - Te-Chun Hsia
- ‡ Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan.,†† Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Rick Sai-Chuen Wu
- § School of Medicine, China Medical University, Taichung, Taiwan.,‡‡ Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| | - Jing-Gung Chung
- * Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,¶ Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
28
|
Fortin O, Aguilar-Uscanga B, Vu KD, Salmieri S, Lacroix M. Cancer Chemopreventive, Antiproliferative, and Superoxide Anion Scavenging Properties ofKluyveromyces marxianusandSaccharomyces cerevisiae var. boulardiiCell Wall Components. Nutr Cancer 2017; 70:83-96. [DOI: 10.1080/01635581.2018.1380204] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Olivier Fortin
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Institute of Nutraceutical and Functional Foods, INRS, Laval, Québec, Canada
| | - Blanca Aguilar-Uscanga
- Department of Pharmacobiology, Laboratorio de Microbiología Industrial, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara (UdG), Jalisco, Mexico
| | - Khanh Dang Vu
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Institute of Nutraceutical and Functional Foods, INRS, Laval, Québec, Canada
| | - Stephane Salmieri
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Institute of Nutraceutical and Functional Foods, INRS, Laval, Québec, Canada
| | - Monique Lacroix
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Institute of Nutraceutical and Functional Foods, INRS, Laval, Québec, Canada
| |
Collapse
|
29
|
Curcumin mediates anticancer effects by modulating multiple cell signaling pathways. Clin Sci (Lond) 2017; 131:1781-1799. [PMID: 28679846 DOI: 10.1042/cs20160935] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 04/05/2017] [Accepted: 04/21/2017] [Indexed: 12/18/2022]
Abstract
Curcumin, a component of a spice native to India, was first isolated in 1815 by Vogel and Pelletier from the rhizomes of Curcuma longa (turmeric) and, subsequently, the chemical structure of curcumin as diferuloylmethane was reported by Milobedzka et al. [(1910) 43., 2163-2170]. Since then, this polyphenol has been shown to exhibit antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antifungal activities. The current review primarily focuses on the anticancer potential of curcumin through the modulation of multiple cell signaling pathways. Curcumin modulates diverse transcription factors, inflammatory cytokines, enzymes, kinases, growth factors, receptors, and various other proteins with an affinity ranging from the pM to the mM range. Furthermore, curcumin effectively regulates tumor cell growth via modulation of numerous cell signaling pathways and potentiates the effect of chemotherapeutic agents and radiation against cancer. Curcumin can interact with most of the targets that are modulated by FDA-approved drugs for cancer therapy. The focus of this review is to discuss the molecular basis for the anticancer activities of curcumin based on preclinical and clinical findings.
Collapse
|
30
|
Asif M, Shafaei A, Abdul Majid AS, Ezzat MO, Dahham SS, Ahamed MBK, Oon CE, Abdul Majid AMS. Mesua ferrea stem bark extract induces apoptosis and inhibits metastasis in human colorectal carcinoma HCT 116 cells, through modulation of multiple cell signalling pathways. Chin J Nat Med 2017; 15:505-514. [DOI: 10.1016/s1875-5364(17)30076-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Indexed: 12/12/2022]
|
31
|
Molecular mechanisms responsible for programmed cell death-inducing attributes of terpenes from Mesua ferrea stem bark towards human colorectal carcinoma HCT 116 cells. J Appl Biomed 2017. [DOI: 10.1016/j.jab.2016.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
32
|
γ-Tocotrienol suppresses growth and sensitises human colorectal tumours to capecitabine in a nude mouse xenograft model by down-regulating multiple molecules. Br J Cancer 2016; 115:814-24. [PMID: 27575851 PMCID: PMC5046209 DOI: 10.1038/bjc.2016.257] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 07/14/2016] [Accepted: 07/26/2016] [Indexed: 12/16/2022] Open
Abstract
Background: Colorectal cancer (CRC) is one of the most common malignancies worldwide and even develops resistance to chemotherapeutic agents over time. As a result survival for patients with CRC remains poor. Method: We investigated both in vitro and in vivo effects of γ-tocotrienol (γ-T3) alone and in combination with capecitabine. Apoptosis and cytotoxicity assays were performed by MTT and FACS analysis, whereas expression of proteins was investigated using western blotting and immunohistochemistry. Results: The γ-T3 inhibited the proliferation of CRC cells with wild-type or mutated KRAS. It also induced apoptosis, inhibited colony formation, and suppressed key regulators of cell survival, cell proliferation, invasion, angiogenesis, and metastasis. Furthermore, γ-T3 enhanced the anticancer effects of capecitabine in CRC cells. In a nude mouse xenograft model of human CRC, oral administration of γ-T3 inhibited tumour growth and enhanced the antitumour efficacy of capecitabine. Western blot and immunohistochemical analysis results indicated that expression of Ki-67, cyclin D1, MMP-9, CXCR4, NF-κB/p65, and VEGF was lower in tumour tissue from the combination treatment group. Combination treatment also downregulated NF-κB and NF-κB-regulated gene products. Conclusions: Our findings suggest that γ-T3 inhibited the growth of human CRC and sensitised CRC to capecitabine by regulating proteins linked to tumourigenesis.
Collapse
|
33
|
Isoledene from Mesua ferrea oleo-gum resin induces apoptosis in HCT 116 cells through ROS-mediated modulation of multiple proteins in the apoptotic pathways: A mechanistic study. Toxicol Lett 2016; 257:84-96. [DOI: 10.1016/j.toxlet.2016.05.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/19/2016] [Accepted: 05/28/2016] [Indexed: 01/05/2023]
|
34
|
Venkatesha SH, Astry B, Nanjundaiah SM, Kim HR, Rajaiah R, Yang Y, Tong L, Yu H, Berman BM, Moudgil KD. Control of autoimmune arthritis by herbal extracts and their bioactive components. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2016.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
35
|
Armada A, Martins C, Spengler G, Molnar J, Amaral L, Rodrigues AS, Viveiros M. Fluorimetric Methods for Analysis of Permeability, Drug Transport Kinetics, and Inhibition of the ABCB1 Membrane Transporter. Methods Mol Biol 2016; 1395:87-103. [PMID: 26910071 DOI: 10.1007/978-1-4939-3347-1_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The cell membrane P-glycoprotein (P-gp; MDR1, ABCB1) is an energy-dependent efflux pump that belongs to the ATP-binding cassette (ABC) family of transporters, and has been associated with drug resistance in eukaryotic cells. Multidrug resistance (MDR) is related to an increased expression and function of the ABCB1 (P-gp) efflux pump that often causes chemotherapeutic failure in cancer. Modulators of this efflux pump, such as the calcium channel blocker verapamil (VP) and cyclosporine A (CypA), can reverse the MDR phenotype but in vivo studies have revealed disappointing results due to adverse side effects. Currently available methods are unable to visualize and assess in a real-time basis the effectiveness of ABCB1 inhibitors on the uptake and efflux of ABCB1 substrates. However, predicting and testing ABCB1 modulation activity using living cells during drug development are crucial. The use of ABCB1-transfected mouse T-lymphoma cell line to study the uptake/efflux of fluorescent probes like ethidium bromide (EB), rhodamine 123 (Rh-123), and carbocyanine dye DiOC2, in the presence and absence of potential inhibitors, is currently used in our laboratories to evaluate the ability of a drug to inhibit ABCB1-mediated drug accumulation and efflux. Here we describe and compare three in vitro methods, which evaluate the permeability, transport kinetics of fluorescent substrates, and inhibition of the ABCB1 efflux pump by drugs of chemical synthesis or extracted from natural sources, using model cancer cell lines overexpressing this transporter, namely (1) real-time fluorimetry that assesses the accumulation of ethidium bromide, (2) flow cytometry, and (3) fluorescent microscopy using rhodamine 123 and DiOC2.
Collapse
Affiliation(s)
- Ana Armada
- Grupo de Micobactérias, Unidade de Ensino e Investigação de Microbiologia Médica e Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Célia Martins
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana 6, Lisbon, 1150-008, Portugal
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Joseph Molnar
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Leonard Amaral
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Unidade de Medicina das Viagens, Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - António Sebastião Rodrigues
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana 6, Lisbon, 1150-008, Portugal
| | - Miguel Viveiros
- Grupo de Micobactérias, Unidade de Ensino e Investigação de Microbiologia Médica e Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal.
| |
Collapse
|
36
|
Prasad VG, Reddy N, Francis A, Nayak PG, Kishore A, Nandakumar K, Rao MC, Shenoy R. Sambar, an Indian Dish Prevents the Development of Dimethyl Hydrazine-Induced Colon Cancer: A Preclinical Study. Pharmacogn Mag 2016; 12:S441-S445. [PMID: 27761072 PMCID: PMC5068121 DOI: 10.4103/0973-1296.191454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background: Colon cancer (CC) is the third commonly diagnosed cancer and the second leading cause of mortality in the US when compared to India where prevalence is less. Possible reason could be the vegetarian diet comprising spices used in curry powders. Researchers believe that 70% of the cases are associated with diet. Spices have inherited a rich tradition for their flavor and medicinal properties. Researchers have been oriented towards spices present in food items for their antitumorigenic properties. Objective: We investigated the effects of sambar as a preventive measure for 1,2-dimethyl hydrazine (DMH)-induced CC in Wistar albino rats. Materials and Methods: The animals were divided into three groups (n = 6) namely control, DMH, and sambar. At the end of the experimental period, the animals were killed using anesthesia and the colons and livers were examined. Results: All the treatment groups exhibited a significant change in the number of aberrant crypt foci (ACF). Sambar group showed a significant change in the colonic GSH when compared to both normal and DMH groups. A significant reduction in the liver GSH was noted in the sambar group. Only sambar group showed a significant change in the liver catalase levels when compared to DMH. There was a significant reduction in the colonic nitrite in the sambar-treated group; 2.94 ± 0.29 when compared to DMH control at 8.09 ± 1.32. On the contrary, a significant rise in the liver nitrite levels was observed in the sambar-treated rats. Conclusion: Sambar may prevent the risk of CC when consumed in dietary proportions. SUMMARY Consumption of sambar significantly reduced aberrant crypt foci in DMH-induced colon cancer model Sambar treatment prevented DMH-induced oxidative changes in the colonic tissue, indicating its antioxidant role Sambar comprises a variety of spices that exhibited both pro- and antioxidant properties in different tissues, leading to its overall beneficial effect in this model.
Abbreviations used: ACF: aberrant crypt foci, CC: colon cancer, DMH: 1,2-dimethyl hydrazine, GSH: glutathione, IL-6: Interleukin-6, TNF-α: Tumor necrosis factor-alpha.
Collapse
Affiliation(s)
- Vutturu Ganga Prasad
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Neetinkumar Reddy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Albi Francis
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Pawan G Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Mallikarjuna C Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Rekha Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| |
Collapse
|
37
|
Fajardo AM, Piazza GA. Chemoprevention in gastrointestinal physiology and disease. Anti-inflammatory approaches for colorectal cancer chemoprevention. Am J Physiol Gastrointest Liver Physiol 2015; 309:G59-70. [PMID: 26021807 PMCID: PMC4504955 DOI: 10.1152/ajpgi.00101.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/19/2015] [Indexed: 01/31/2023]
Abstract
Colorectal cancer (CRC) is one of the most common human malignancies and a leading cause of cancer-related deaths in developed countries. Identifying effective preventive strategies aimed at inhibiting the development and progression of CRC is critical for reducing the incidence and mortality of this malignancy. The prevention of carcinogenesis by anti-inflammatory agents including nonsteroidal anti-inflammatory drugs (NSAIDs), selective cyclooxygenase-2 (COX-2) inhibitors, and natural products is an area of considerable interest and research. Numerous anti-inflammatory agents have been identified as potential CRC chemopreventive agents but vary in their mechanism of action. This review will discuss the molecular mechanisms being studied for the CRC chemopreventive activity of NSAIDs (i.e., aspirin, sulindac, and ibuprofen), COX-2 inhibitors (i.e., celecoxib), natural products (i.e., curcumin, resveratrol, EGCG, genistein, and baicalein), and metformin. A deeper understanding of how these anti-inflammatory agents inhibit CRC will provide insight into the development of potentially safer and more effective chemopreventive drugs.
Collapse
Affiliation(s)
- Alexandra M. Fajardo
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Gary A. Piazza
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| |
Collapse
|
38
|
Tang K, Huang J, Pan J, Zhang X, Lu W. Design, synthesis and biological evaluation of C(6)-indole celastrol derivatives as potential antitumor agents. RSC Adv 2015. [DOI: 10.1039/c4ra15414b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new class of C(6)-indole substituted celastrol derivatives were designed and synthesized. Among all these synthesized molecules, compound 4f and 4h displayed excellent in vitro antiproliferative activities against Bel7402 cancer cells.
Collapse
Affiliation(s)
- Kaiyong Tang
- Institute of Drug Discovery and Development
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- East China Normal University
- Shanghai 200062
- PR China
| | - Jinwen Huang
- Shanghai Hotmed Sciences Co., Ltd
- Shanghai 201201
- PR China
| | - Junfang Pan
- Shanghai Hotmed Sciences Co., Ltd
- Shanghai 201201
- PR China
| | - Xuan Zhang
- Institute of Drug Discovery and Development
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- East China Normal University
- Shanghai 200062
- PR China
| | - Wei Lu
- Institute of Drug Discovery and Development
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- East China Normal University
- Shanghai 200062
- PR China
| |
Collapse
|
39
|
Ortiz LMG, Lombardi P, Tillhon M, Scovassi AI. Berberine, an epiphany against cancer. Molecules 2014; 19:12349-67. [PMID: 25153862 PMCID: PMC6271598 DOI: 10.3390/molecules190812349] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 12/21/2022] Open
Abstract
Alkaloids are used in traditional medicine for the treatment of many diseases. These compounds are synthesized in plants as secondary metabolites and have multiple effects on cellular metabolism. Among plant derivatives with biological properties, the isoquinoline quaternary alkaloid berberine possesses a broad range of therapeutic uses against several diseases. In recent years, berberine has been reported to inhibit cell proliferation and to be cytotoxic towards cancer cells. Based on this evidence, many derivatives have been synthesized to improve berberine efficiency and selectivity; the results so far obtained on human cancer cell lines support the idea that they could be promising agents for cancer treatment. The main properties of berberine and derivatives will be illustrated.
Collapse
Affiliation(s)
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe di Vittorio 70, Novate Milanese 20026, Italy.
| | - Micol Tillhon
- Istituto di Genetica Molecolare CNR, Via Abbiategrasso 207, Pavia 27100, Italy.
| | - Anna Ivana Scovassi
- Istituto di Genetica Molecolare CNR, Via Abbiategrasso 207, Pavia 27100, Italy.
| |
Collapse
|
40
|
Abstract
Recent discoveries of AMPK activators point to the large number of therapeutic candidates that can be transformed to successful designs of novel drugs. AMPK is a universal energy sensor and influences almost all physiological processes in the cells. Thus, regulation of the cellular energy metabolism can be achieved in selective tissues via the artificial activation of AMPK by small molecules. Recently, special attention has been given to direct activators of AMPK that are regulated by several nonspecific upstream factors. The direct activation of AMPK, by definition, should lead to more specific biological activities and as a result minimize possible side effects.
Collapse
|
41
|
Seweryn E, Glehsk M, Środa-Pomianek K, Ceremuga I, Włodarczyk M, Gamian A. Cytotoxic Effects of Four Aescin Types on Human Colon Adenocarcinoma Cell Lines. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400900328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Four types of aescin that are available on the pharmaceutical market, β-aescin crystalline, β-aescin amorphous, β-aescin sodium and aescin polysulfate, have been analyzed for their cytotoxic effects on human colon adenocarcinoma (LoVo) and doxorubicin-resistant human colon adenocarcinoma cell lines (LoVo/Dx). Their cytotoxic activities were evaluated by sulforhodamine B (SRB) and methyl tetrazolium (MTT) assays. All four types of aescin exerted strong dose-dependent cytotoxicity to LoVo and, to a lesser degree, LoVo/Dx cell lines. The IC50 value for the LoVo/Dx cell line was higher, but still dose-dependent. Results from both assays demonstrated that β-aescin crystalline has the most cytotoxic activity toward human colon adenocarcinoma cell lines.
Collapse
Affiliation(s)
- Ewa Seweryn
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, P land
| | - Michał Glehsk
- Department of Pharmacognosy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| | - Kamila Środa-Pomianek
- Department of Biophysics, Wroclaw Medical University, Chalubinskiego 10, 50–368 Wroclaw, Poland
| | - Ireneusz Ceremuga
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, P land
| | - Maciej Włodarczyk
- Department of Pharmacognosy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| | - Andrzej Gamian
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, P land
| |
Collapse
|
42
|
|
43
|
Friedman M. Anticarcinogenic, cardioprotective, and other health benefits of tomato compounds lycopene, α-tomatine, and tomatidine in pure form and in fresh and processed tomatoes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9534-50. [PMID: 24079774 DOI: 10.1021/jf402654e] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Tomatoes produce the bioactive compounds lycopene and α-tomatine that are reported to have potential health-promoting effects in animals and humans, but our understanding of the roles of these compounds in the diet is incomplete. Our current knowledge gained from the chemistry and analysis of these compounds in fresh and processed tomatoes and from studies on their bioavailability, bioactivity, and mechanisms of action against cancer cells and other beneficial bioactivities including antibiotic, anti-inflammatory, antioxidative, cardiovascular, and immunostimulating effects in cells, animals, and humans is discussed and interpreted here. Areas for future research are also suggested. The collated information and suggested research might contribute to a better understanding of the agronomical, biochemical, chemical, physiological, molecular, and cellular bases of the health-promoting effects and facilitate and guide further studies needed to optimize the use of lycopene and α-tomatine in pure form and in fresh tomatoes and processed tomato products to help prevent or treat human disease.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture , Albany, California 94710, United States
| |
Collapse
|