A Perspective on the Role of Microbiome for Colorectal Cancer Treatment.
Cancers (Basel) 2021;
13:cancers13184623. [PMID:
34572850 PMCID:
PMC8468110 DOI:
10.3390/cancers13184623]
[Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary
Colorectal cancer is the third most diagnosed cancer worldwide and contributes significantly to global mortality and morbidity. The gut microbiome, composed of the trillions of microbes endemic to the human gastrointestinal tract, has been shown to be implicated in colorectal cancer oncogenesis; however, the roles of microbiota and dysbiosis in CRC treatment remain poorly understood. This review sought to characterize this relationship and in doing so, identify how these interactions may inform future treatments in the form of synbiotics designed to alter the host microbiota to achieve optimized treatment outcomes.
Abstract
In healthy hosts, trillions of microbes colonise the gut and oral cavity in a well-balanced state, maintaining a mutually beneficial relationship. Loss of this balance, termed dysbiosis, is strongly implicated in the pathogenesis of colorectal cancer (CRC). However, the roles of microbiota and dysbiosis in CRC treatment remain poorly understood. Recent studies suggest that the gut microbiota has the ability to affect the host response to chemotherapeutic agents by enhancing drug efficacy, promoting chemoresistance and mediating chemotherapy-induced toxicity and side effects via a variety of mechanisms. Several other studies have also proposed manipulation of the microbiota to optimise CRC treatment. In this review, we summarise the current advancement of knowledge on how microbiota and CRC treatments interact with each other and how this interaction may shed some light on the development of personalised microbiota manipulations that improve CRC treatment outcomes.
Collapse