1
|
Heuer JG, Harlan SM, Yang DD, Jaqua DL, Boyles JS, Wilson JM, Heinz-Taheny KM, Sullivan JM, Wei T, Qian HR, Witcher DR, Breyer MD. Role of TGF-alpha in the progression of diabetic kidney disease. Am J Physiol Renal Physiol 2017; 312:F951-F962. [DOI: 10.1152/ajprenal.00443.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 02/06/2017] [Accepted: 02/22/2017] [Indexed: 01/15/2023] Open
Abstract
Transforming growth factor-alpha (TGFA) has been shown to play a role in experimental chronic kidney disease associated with nephron reduction, while its role in diabetic kidney disease (DKD) is unknown. We show here that intrarenal TGFA mRNA expression, as well as urine and serum TGFA, are increased in human DKD. We used a TGFA neutralizing antibody to determine the role of TGFA in two models of renal disease, the remnant surgical reduction model and the uninephrectomized (uniNx) db/db DKD model. In addition, the contribution of TGFA to DKD progression was examined using an adeno-associated virus approach to increase circulating TGFA in experimental DKD. In vivo blockade of TGFA attenuated kidney disease progression in both nondiabetic 129S6 nephron reduction and Type 2 diabetic uniNx db/db models, whereas overexpression of TGFA in uniNx db/db model accelerated renal disease. Therapeutic activity of the TGFA antibody was enhanced with renin angiotensin system inhibition with further improvement in renal parameters. These findings suggest a pathologic contribution of TGFA in DKD and support the possibility that therapeutic administration of neutralizing antibodies could provide a novel treatment for the disease.
Collapse
Affiliation(s)
- Josef G. Heuer
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Shannon M. Harlan
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Derek D. Yang
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Dianna L. Jaqua
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Jeffrey S. Boyles
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Jonathan M. Wilson
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Kathleen M. Heinz-Taheny
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - John M. Sullivan
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Tao Wei
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Hui-Rong Qian
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Derrick R. Witcher
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Matthew D. Breyer
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| |
Collapse
|
2
|
Dugbartey GJ. Diabetic nephropathy: A potential savior with 'rotten-egg' smell. Pharmacol Rep 2016; 69:331-339. [PMID: 28183033 DOI: 10.1016/j.pharep.2016.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/20/2016] [Accepted: 11/09/2016] [Indexed: 02/06/2023]
Abstract
Diabetic nephropathy (DN) is currently the leading cause of end-stage renal disease. Despite optimal management, DN is still a major contributor to morbidity and mortality of diabetic patients worldwide. The major pathological alterations in DN include excessive accumulation and deposition of extracellular matrix, leading to expansion of mesangial matrix, thickening of glomerular basement membrane and tubulointerstitial fibrosis. At the molecular level, accumulating evidence suggests that hyperglycemia or high glucose mediates renal injury in DN via multiple molecular mechanisms such as induction of oxidative stress, upregulation of renal transforming growth factor beta-1 expression, production of proinflammatory cytokines, activation of fibroblasts and renin angiotensin system, and depletion of adenosine triphosphate. Also worrying is the fact that existing therapies only retard the disease progression but do not prevent it. Therefore, there is urgent need to identify novel therapies to target additional disease mechanisms. Hydrogen sulfide (H2S), the third member of the gasotransmitter family, has recently been identified and demonstrated to possess important therapeutic characteristics that prevent the development and progression of DN in experimental animals by targeting several important molecular pathways, and therefore may represent an alternative or additional therapeutic approach for DN. This review discusses recent experimental findings on the molecular mechanisms underlying the therapeutic effects of H2S against the development and progression of DN and its clinical application in the future.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
3
|
Isaacs AN, Vincent A. Antihypertensive therapy for the prevention of nephropathy in diabetic hypertensive patients. J Clin Pharm Ther 2016; 41:111-5. [PMID: 26850093 DOI: 10.1111/jcpt.12361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/12/2016] [Indexed: 11/29/2022]
Affiliation(s)
- A. N. Isaacs
- Purdue University College of Pharmacy; Department of Pharmacy Practice; West Lafayette IN USA
- Eskenazi Health; Department of Pharmacy Services; Indianapolis IN USA
| | - A. Vincent
- Purdue University College of Pharmacy; Department of Pharmacy Practice; West Lafayette IN USA
- Indiana University Health; Methodist Hospital, Department of Pharmacy; Indianapolis IN USA
| |
Collapse
|