1
|
Heydari MB, Ghanbari-Movahed Z, Heydari M, Farzaei MH. In vitro study of the mesenchymal stem cells-conditional media role in skin wound healing process: A systematic review. Int Wound J 2022; 19:2210-2223. [PMID: 35412017 DOI: 10.1111/iwj.13796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cell (MSC)-conditioned medium (CM) offers a potential opportunity in the skin wound healing treatment. In this systematic review, an overview of the knowledge on this topic has been provided. A multistep search of the PubMed, Scopus and Science Direct database has been performed to identify papers on MSCs-conditional media used in skin wound healing. Eligibility checks were performed based upon predefined selection criteria. Of the 485 articles initially identified, consequently, only 96 articles apparently related to MSC-conditional media were initially assessed for eligibility. Finally, the 32 articles, strictly regarding the in vitro use of MSCs-conditional media in skin wounds, were analysed. The information analysed highlights the efficacy of MSCs-conditional media on skin wound healing in vitro models. The outcome of this review may be used to guide pre-clinical and clinical studies on the role of MSCs-conditional media in skin wound healing.
Collapse
Affiliation(s)
- Mohammad Bagher Heydari
- Specialist General Surgeon, Taleghani Hospital, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Zahra Ghanbari-Movahed
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Heydari
- Department of Pharmacy Zabol University of Medical Sciences, Zabol, Iran
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Montero-Vilchez T, Sierra-Sánchez Á, Sanchez-Diaz M, Quiñones-Vico MI, Sanabria-de-la-Torre R, Martinez-Lopez A, Arias-Santiago S. Mesenchymal Stromal Cell-Conditioned Medium for Skin Diseases: A Systematic Review. Front Cell Dev Biol 2021; 9:654210. [PMID: 34368115 PMCID: PMC8343397 DOI: 10.3389/fcell.2021.654210] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
The skin is the largest organ of the human body, and its dysfunction is related to many diseases. There is a need to find new potential effective therapies for some skin conditions such as inflammatory diseases, wound healing, or hair restoration. Mesenchymal stromal cell (MSC)-conditioned medium (CM) provides a potential opportunity in the treatment of skin disease. Thus, the objective of this review is to evaluate the uses of MSC-CM for treating skin diseases in both animal and human models. A systematic review was conducted regarding the use of MSC-CM for treating skin conditions. One hundred one studies were analyzed. MSC-CM was evaluated in wound healing (55), hypertrophic scars (9), flap reperfusion (4), hair restoration (15), skin rejuvenation (15), and inflammatory skin diseases (3). MSC-CM was obtained from different MSC sources, mainly adipose tissue, bone marrow, and umbilical cord blood. MSC-CM was tested intravenously, intraperitoneally, subcutaneously, intradermally or intralesionally injected or topically applied. MSC-CM was used in both animals and humans. MSC-CM improved wound healing, hair restoration, skin rejuvenation, atopic dermatitis, and psoriasis in both animals and humans. MSC-CM also decreased hypertrophic scars and flap ischemia in animal models. In conclusion, MSC-CM is a promising therapy for skin conditions. Further studies are needed to corroborate safety and effectiveness and to standardize CM manufacturing.
Collapse
Affiliation(s)
- Trinidad Montero-Vilchez
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Álvaro Sierra-Sánchez
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain
| | - Manuel Sanchez-Diaz
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Maria Isabel Quiñones-Vico
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain
- Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Raquel Sanabria-de-la-Torre
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain
- Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Antonio Martinez-Lopez
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Salvador Arias-Santiago
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain
- Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
3
|
Zhao X, Guo J, Zhang F, Zhang J, Liu D, Hu W, Yin H, Jin L. Therapeutic application of adipose-derived stromal vascular fraction in diabetic foot. Stem Cell Res Ther 2020; 11:394. [PMID: 32928305 PMCID: PMC7488783 DOI: 10.1186/s13287-020-01825-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/15/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetic foot is one of the severest complications of diabetes. In severe cases, this disease may be lead to amputation or even death due to secondary infection and ischemic necrosis. Since the ineffectiveness of traditional therapy, autologous stem cell transplantation has been used to treat diabetic foot. This simple, safe, and effective therapy is expected to be applied and promoted in the future.In this review, we described the detailed pathogenesis of diabetic foot and the common clinical treatments currently used. We also revealed vascular remodeling as the potential mechanism of therapeutic functions of adipose-derived stromal vascular fraction (SVF) in treating diabetic foot.
Collapse
Affiliation(s)
- Xiansheng Zhao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, China
| | - Jiamin Guo
- Irell & Manella Graduate School of Biological Sciences, City of Hope National Medical Center, California, 91010, USA
| | - Fangfang Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, China
| | - Jue Zhang
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Delin Liu
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Wenjun Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, China.
| | - Han Yin
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China.
| | - Liang Jin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, China.
| |
Collapse
|
4
|
Miura‐Yura E, Tsunekawa S, Naruse K, Nakamura N, Motegi M, Nakai‐Shimoda H, Asano S, Kato M, Yamada Y, Izumoto‐Akita T, Yamamoto A, Himeno T, Kondo M, Kato Y, Nakamura J, Kamiya H. Secreted factors from cultured dental pulp stem cells promoted neurite outgrowth of dorsal root ganglion neurons and ameliorated neural functions in streptozotocin-induced diabetic mice. J Diabetes Investig 2020; 11:28-38. [PMID: 31144464 PMCID: PMC6944849 DOI: 10.1111/jdi.13085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
AIMS/INTRODUCTION Transplantation of stem cells promotes axonal regeneration and angiogenesis in a paracrine manner. In the present study, we examined whether the secreted factors in conditioned medium of stem cells from human exfoliated deciduous teeth (SHED-CM) had beneficial effects on diabetic polyneuropathy in mice. MATERIALS AND METHODS Conditioned medium of stem cells from human exfoliated deciduous teeth was collected 48 h after culturing in serum-free Dulbecco's modified Eagle's medium (DMEM), and separated into four fractions according to molecular weight. Dorsal root ganglion neurons from C57BL/6J mice were cultured with SHED-CM or DMEM to evaluate the effect on neurite outgrowth. Streptozotocin-induced diabetic mice were injected with 100 μL of SHED-CM or DMEM into the unilateral hindlimb muscles twice a week over a period of 4 weeks. Peripheral nerve functions were evaluated by the plantar test, and motor and sensory nerve conduction velocities. Intraepidermal nerve fiber densities, capillary number-to-muscle fiber ratio, capillary blood flow and morphometry of sural nerves were also evaluated. RESULTS Conditioned medium of stem cells from human exfoliated deciduous teeth significantly promoted neurite outgrowth of dorsal root ganglion neurons compared with DMEM. Among four fractions of SHED-CM, the only fraction of <6 kDa promoted the neurite outgrowth of dorsal root ganglion neurons. In addition, SHED-CM significantly prevented decline in sensory nerve conduction velocities compared with DMEM in diabetic mice. Although SHED-CM did not improve intraepidermal nerve fiber densities or morphometry of sural nerves, SHED-CM ameliorated the capillary number-to-muscle fiber ratio and capillary blood flow. CONCLUSIONS These results suggested that SHED-CM might have a therapeutic effect on diabetic polyneuropathy through promoting neurite outgrowth, and the increase in capillaries might contribute to the improvement of neural function.
Collapse
Affiliation(s)
- Emiri Miura‐Yura
- Division of DiabetesDepartment of Internal MedicineAichi Medical University School of MedicineNagakuteJapan
| | - Shin Tsunekawa
- Division of DiabetesDepartment of Internal MedicineAichi Medical University School of MedicineNagakuteJapan
| | - Keiko Naruse
- Department of Internal MedicineSchool of DentistryAichi Gakuin UniversityNagoyaJapan
| | - Nobuhisa Nakamura
- Department of Internal MedicineSchool of DentistryAichi Gakuin UniversityNagoyaJapan
| | - Mikio Motegi
- Division of DiabetesDepartment of Internal MedicineAichi Medical University School of MedicineNagakuteJapan
| | - Hiromi Nakai‐Shimoda
- Division of DiabetesDepartment of Internal MedicineAichi Medical University School of MedicineNagakuteJapan
| | - Saeko Asano
- Division of DiabetesDepartment of Internal MedicineAichi Medical University School of MedicineNagakuteJapan
| | - Makoto Kato
- Division of DiabetesDepartment of Internal MedicineAichi Medical University School of MedicineNagakuteJapan
| | - Yuichiro Yamada
- Division of DiabetesDepartment of Internal MedicineAichi Medical University School of MedicineNagakuteJapan
| | - Takako Izumoto‐Akita
- Department of Oral and Maxillofacial SurgeryNagoya University Graduate School of MedicineNagoyaJapan
| | - Akihito Yamamoto
- Department of Histology and Oral HistologyInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Tatsuhito Himeno
- Division of DiabetesDepartment of Internal MedicineAichi Medical University School of MedicineNagakuteJapan
| | - Masaki Kondo
- Division of DiabetesDepartment of Internal MedicineAichi Medical University School of MedicineNagakuteJapan
| | - Yoshiro Kato
- Division of DiabetesDepartment of Internal MedicineAichi Medical University School of MedicineNagakuteJapan
| | - Jiro Nakamura
- Division of DiabetesDepartment of Internal MedicineAichi Medical University School of MedicineNagakuteJapan
| | - Hideki Kamiya
- Division of DiabetesDepartment of Internal MedicineAichi Medical University School of MedicineNagakuteJapan
| |
Collapse
|