1
|
Nguyen TV, Do LTK, Lin Q, Nagahara M, Namula Z, Wittayarat M, Hirata M, Otoi T, Tanihara F. Programmed cell death-1-modified pig developed using electroporation-mediated gene editing for in vitro fertilized zygotes. In Vitro Cell Dev Biol Anim 2024; 60:716-724. [PMID: 38485817 DOI: 10.1007/s11626-024-00869-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/10/2024] [Indexed: 08/03/2024]
Abstract
Programmed cell death-1 (PD-1) is an immunoinhibitory receptor required to suppress inappropriate immune responses such as autoimmunity. Immune checkpoint antibodies that augment the PD-1 pathway lead to immune-related adverse events (irAEs), organ non-specific side effects due to autoimmune activation in humans. In this study, we generated a PD-1 mutant pig using electroporation-mediated introduction of the CRISPR/Cas9 system into porcine zygotes to evaluate the PD-1 gene deficiency phenotype. We optimized the efficient guide RNAs (gRNAs) targeting PD-1 in zygotes and transferred electroporated embryos with the optimized gRNAs and Cas9 into recipient gilts. One recipient gilt became pregnant and gave birth to two piglets. Sequencing analysis revealed that both piglets were biallelic mutants. At 18 mo of age, one pig showed non-purulent arthritis of the left elbow/knee joint and oligozoospermia, presumably related to PD-1 modification. Although this study has a limitation because of the small number of cases, our phenotypic analysis of PD-1 modification in pigs will provide significant insight into human medicine and PD-1-deficient pigs can be beneficial models for studying human irAEs.
Collapse
Affiliation(s)
- Thanh-Van Nguyen
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, 100000, Vietnam
| | - Lanh Thi Kim Do
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, 100000, Vietnam
| | - Qingyi Lin
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
- Bio-Innovation Research Center, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
| | - Megumi Nagahara
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
- Bio-Innovation Research Center, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
| | - Zhao Namula
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Manita Wittayarat
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
- Bio-Innovation Research Center, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
- Bio-Innovation Research Center, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
| | - Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan.
- Center for Development of Advanced Medical Technology, Jichi Medical University, Shimotsuke, Tochigi, 3290498, Japan.
| |
Collapse
|
2
|
Zieliński M, Sakowska J, Iwaszkiewicz-Grześ D, Gliwiński M, Hennig M, Żalińska M, Wołoszyn-Durkiewicz A, Jaźwińska-Curyłło A, Kamińska H, Owczuk R, Młynarski W, Jarosz-Chobot P, Bossowski A, Szadkowska A, Fendler W, Beń-Skowronek I, Chobot A, Myśliwiec M, Siebert J, Marek-Trzonkowska N, Trzonkowski P. PD-1 Receptor (+) T cells are associated with the efficacy of the combined treatment with regulatory t cells and rituximab in type 1 diabetes children via regulatory t cells suppressive activity amelioration. Int Immunopharmacol 2024; 132:111919. [PMID: 38554443 DOI: 10.1016/j.intimp.2024.111919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024]
Abstract
An imbalance between exaggerated autoaggressive T cell responses, primarily CD8 + T cells, and impaired tolerogenic mechanisms underlie the development of type 1 diabetes mellitus. Disease-modifying strategies, particularly immunotherapy focusing on FoxP3 + T regulatory cells (Treg), and B cells facilitating antigen presentation for T cells, show promise. Selective depletion of B cells may be achieved with an anti-CD20 monoclonal antibody (mAb). In a 2-year-long flow cytometry follow-up, involving 32 peripheral blood T and B cell markers across three trial arms (Treg + rituximab N = 12, Treg + placebo N = 13, control N = 11), we observed significant changes. PD-1 receptor (+) CD4 + Treg, CD4 + effector T cells (Teffs), and CD8 + T cell percentages increased in the combined regimen group by the end of follow-up. Conversely, the control group exhibited a notable reduction in PD-1 receptor (+) CD4 + Teff percentages. Considering clinical endpoints, higher PD-1 receptor (+) expression on T cells correlated with positive responses, including a higher mixed meal tolerance test AUC, and reduced daily insulin dosage. PD-1 receptor (+) T cells emerged as a potential therapy outcome biomarker. In vitro validation confirmed that successful Teff suppression was associated with elevated PD-1 receptor (+) Treg levels. These findings support PD-1 receptor (+) T cells as a reliable indicator of treatment with combined immunotherapy consisting of Tregs and anti-CD20 mAb efficacy in type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Maciej Zieliński
- Department of Medical Immunology, Medical University of Gdańsk, Debinki 7 80-210, Poland; Poltreg S.A., Botaniczna 20 Street, 80-298 Gdańsk, Poland
| | - Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Debinki 7 80-210, Poland; Poltreg S.A., Botaniczna 20 Street, 80-298 Gdańsk, Poland
| | - Dorota Iwaszkiewicz-Grześ
- Department of Medical Immunology, Medical University of Gdańsk, Debinki 7 80-210, Poland; Poltreg S.A., Botaniczna 20 Street, 80-298 Gdańsk, Poland
| | - Mateusz Gliwiński
- Department of Medical Immunology, Medical University of Gdańsk, Debinki 7 80-210, Poland; Poltreg S.A., Botaniczna 20 Street, 80-298 Gdańsk, Poland
| | - Matylda Hennig
- Department of Pediatric Diabetology and Endocrinology, Medical University of Gdańsk, Debinki 7 80-210, Poland
| | - Magdalena Żalińska
- Department of Pediatric Diabetology and Endocrinology, Medical University of Gdańsk, Debinki 7 80-210, Poland
| | - Anna Wołoszyn-Durkiewicz
- Department of Pediatric Diabetology and Endocrinology, Medical University of Gdańsk, Debinki 7 80-210, Poland
| | - Anna Jaźwińska-Curyłło
- Regional Center of Blood Donation and Treatment, Hoene-Wrońskiego 4, 80-210 Gdańsk, Poland
| | - Halla Kamińska
- Department of Children's Diabetology, Medical University of Silesia, Medykow 16, 40-752 Katowice, Poland
| | - Radosław Owczuk
- Department of Anaesthesiology and Critical Care, Medical University of Gdańsk, Debinki 7 80-210, Poland
| | - Wojciech Młynarski
- Department of Paediatrics, Oncology and Haematology, Medical University of Lodz, Sporna 36/50, 91-738 Lodz, Poland
| | - Przemysława Jarosz-Chobot
- Department of Children's Diabetology, Medical University of Silesia, Medykow 16, 40-752 Katowice, Poland
| | - Artur Bossowski
- Department of Peadiatrics, Endocrinology, Diabetology with Cardiology Division, Medical University of Bialystok, Jana Kilińskiego 1, 15-089 Białystok, Poland
| | - Agnieszka Szadkowska
- Department of Pediatrics, Diabetology, Endocrinology and Nephrology, Medical University of Lodz, Sporna 36/50, 91-738 Lodz, Poland
| | - Wojciech Fendler
- Department of Pediatrics, Diabetology, Endocrinology and Nephrology, Medical University of Lodz, Sporna 36/50, 91-738 Lodz, Poland
| | - Iwona Beń-Skowronek
- Dept. Pediatric Endocrinology and Diabetology, Medical University of Lublin, ul. Prof. A. Gebali 6, 20-093 Lublin, Poland
| | - Agata Chobot
- Department of Paediatrics, Institute of Medical Sciences, University of Opole, Al. Witosa 26, 45-401 Opole, Poland
| | - Małgorzata Myśliwiec
- Poltreg S.A., Botaniczna 20 Street, 80-298 Gdańsk, Poland; Department of Pediatric Diabetology and Endocrinology, Medical University of Gdańsk, Debinki 7 80-210, Poland
| | - Janusz Siebert
- Department of Family Medicine, Laboratory of Immunoregulation and Cellular Therapies, Medical University of Gdańsk, Debinki 2 80-210, Poland
| | - Natalia Marek-Trzonkowska
- Poltreg S.A., Botaniczna 20 Street, 80-298 Gdańsk, Poland; Department of Family Medicine, Laboratory of Immunoregulation and Cellular Therapies, Medical University of Gdańsk, Debinki 2 80-210, Poland; International Centre for Cancer Vaccine Science, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Debinki 7 80-210, Poland; Poltreg S.A., Botaniczna 20 Street, 80-298 Gdańsk, Poland.
| |
Collapse
|
3
|
Mohammadi V, Maleki AJ, Nazari M, Siahmansouri A, Moradi A, Elahi R, Esmaeilzadeh A. Chimeric Antigen Receptor (CAR)-Based Cell Therapy for Type 1 Diabetes Mellitus (T1DM); Current Progress and Future Approaches. Stem Cell Rev Rep 2024; 20:585-600. [PMID: 38153634 DOI: 10.1007/s12015-023-10668-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2023] [Indexed: 12/29/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease that destroys insulin-producing pancreatic β-cells. Insulin replacement therapy is currently the mainstay of treatment for T1DM; however, treatment with insulin does not ameliorate disease progression, as dysregulated immune response and inflammation continue to cause further pancreatic β-cell degradation. Therefore, shifting therapeutic strategies toward immunomodulating approaches could be effective to prevent and reverse disease progression. Different immune-modulatory therapies could be used, e.g., monoclonal-based immunotherapy, mesenchymal stem cell, and immune cell therapy. Since immune-modulatory approaches could have a systemic effect on the immune system and cause toxicity, more specific treatment options should target the immune response against pancreatic β-cells. In this regard, chimeric antigen receptor (CAR)-based immunotherapy could be a promising candidate for modulation of dysregulated immune function in T1DM. CAR-based therapy has previously been approved for a number of hematologic malignancies. Nevertheless, there is renewed interest in CAR T cells' " off-the-shelf " treatment for T1DM. Several pre-clinical studies demonstrated that redirecting antigen-specific CAR T cells, especially regulatory CAR T cells (CAR Tregs), toward the pancreatic β-cells, could prevent diabetes onset and progression in diabetic mice models. Here, we aim to review the current progress of CAR-based immune-cell therapy for T1DM and the corresponding challenges, with a special focus on designing CAR-based immunomodulatory strategies to improve its efficacy in the treatment of T1DM.
Collapse
Affiliation(s)
- Vahid Mohammadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Siahmansouri
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amirhosein Moradi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
4
|
Gomez-Muñoz L, Dominguez-Bendala J, Pastori RL, Vives-Pi M. Immunometabolic biomarkers for partial remission in type 1 diabetes mellitus. Trends Endocrinol Metab 2024; 35:151-163. [PMID: 37949732 DOI: 10.1016/j.tem.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Shortly after diagnosis of type 1 diabetes mellitus (T1DM) and initiation of insulin therapy, many patients experience a transient partial remission (PR) phase, also known as the honeymoon phase. This phase presents a potential therapeutic opportunity due to its association with immunoregulatory and β cell-protective mechanisms. However, the lack of biomarkers makes its characterization difficult. In this review, we cover the current literature addressing the discovery of new predictive and monitoring biomarkers that contribute to the understanding of the metabolic, epigenetic, and immunological mechanisms underlying PR. We further discuss how these peripheral biomarkers reflect attempts to arrest β cell autoimmunity and how these can be applied in clinical practice.
Collapse
Affiliation(s)
- Laia Gomez-Muñoz
- Immunology Section, Germans Trias i Pujol Research Institute, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ricardo L Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Marta Vives-Pi
- Immunology Section, Germans Trias i Pujol Research Institute, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; Ahead Therapeutics SL, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
5
|
Yilmazer A, Zevla DM, Malmkvist R, Rodríguez CAB, Undurraga P, Kirgin E, Boernert M, Voehringer D, Kershaw O, Schlenner S, Kretschmer K. Selective ablation of thymic and peripheral Foxp3 + regulatory T cell development. Front Immunol 2023; 14:1298938. [PMID: 38164128 PMCID: PMC10757929 DOI: 10.3389/fimmu.2023.1298938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Foxp3+ regulatory T (Treg) cells of thymic (tTreg) and peripheral (pTreg) developmental origin are thought to synergistically act to ensure immune homeostasis, with self-reactive tTreg cells primarily constraining autoimmune responses. Here we exploited a Foxp3-dependent reporter with thymus-specific GFP/Cre activity to selectively ablate either tTreg (ΔtTreg) or pTreg (ΔpTreg) cell development, while sparing the respective sister populations. We found that, in contrast to the tTreg cell behavior in ΔpTreg mice, pTreg cells acquired a highly activated suppressor phenotype and replenished the Treg cell pool of ΔtTreg mice on a non-autoimmune C57BL/6 background. Despite the absence of tTreg cells, pTreg cells prevented early mortality and fatal autoimmunity commonly observed in Foxp3-deficient models of complete Treg cell deficiency, and largely maintained immune tolerance even as the ΔtTreg mice aged. However, only two generations of backcrossing to the autoimmune-prone non-obese diabetic (NOD) background were sufficient to cause severe disease lethality associated with different, partially overlapping patterns of organ-specific autoimmunity. This included a particularly severe form of autoimmune diabetes characterized by an early onset and abrogation of the sex bias usually observed in the NOD mouse model of human type 1 diabetes. Genetic association studies further allowed us to define a small set of autoimmune risk loci sufficient to promote β cell autoimmunity, including genes known to impinge on Treg cell biology. Overall, these studies show an unexpectedly high functional adaptability of pTreg cells, emphasizing their important role as mediators of bystander effects to ensure self-tolerance.
Collapse
Affiliation(s)
- Acelya Yilmazer
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Dimitra Maria Zevla
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Rikke Malmkvist
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Carlos Alejandro Bello Rodríguez
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Pablo Undurraga
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Emre Kirgin
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Marie Boernert
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - David Voehringer
- Department of Infection Biology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Olivia Kershaw
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Susan Schlenner
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
6
|
Atkinson MA, Mirmira RG. The pathogenic "symphony" in type 1 diabetes: A disorder of the immune system, β cells, and exocrine pancreas. Cell Metab 2023; 35:1500-1518. [PMID: 37478842 PMCID: PMC10529265 DOI: 10.1016/j.cmet.2023.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023]
Abstract
Type 1 diabetes (T1D) is widely considered to result from the autoimmune destruction of insulin-producing β cells. This concept has been a central tenet for decades of attempts seeking to decipher the disorder's pathogenesis and prevent/reverse the disease. Recently, this and many other disease-related notions have come under increasing question, particularly given knowledge gained from analyses of human T1D pancreas. Perhaps most crucial are findings suggesting that a collective of cellular constituents-immune, endocrine, and exocrine in origin-mechanistically coalesce to facilitate T1D. This review considers these emerging concepts, from basic science to clinical research, and identifies several key remaining knowledge voids.
Collapse
Affiliation(s)
- Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Raghavendra G Mirmira
- Departments of Medicine and Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Liao D, Liu C, Chen S, Liu F, Li W, Shangguan D, Shi Y. Recent advances in immune checkpoint inhibitor-induced type 1 diabetes mellitus. Int Immunopharmacol 2023; 122:110414. [PMID: 37390646 DOI: 10.1016/j.intimp.2023.110414] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 07/02/2023]
Abstract
As a new group of anticancer drugs, immune checkpoint inhibitors (ICIs) have exhibited favorable antitumor efficacy in numerous malignant tumors. Anti-cytotoxic T lymphocyte associated antigen-4 (CTLA-4), anti-programmed cell death-1 (PD-1) and anti-programmed cell death ligand-1 (PD-L1) are three kinds of ICIs widely used in clinical practice. However, ICI therapy (monotherapy or combination therapy) is always accompanied by a unique toxicity profile known as immune-related adverse events (irAEs) affecting multiple organs. The endocrine glands are common targets of irAEs induced by ICIs, which cause type 1 diabetes mellitus (T1DM) when the pancreas is affected. Although the incidence rate of ICI-induced T1DM is rare, it will always lead to an irreversible impairment of β-cells and be potentially life-threatening. Hence, it is vital for endocrinologists and oncologists to obtain a comprehensive understanding of ICI-induced T1DM and its management. In our present manuscript, we have reviewed the epidemiology, pathology and mechanism, diagnosis, management, and treatments of ICI-induced T1DM.
Collapse
Affiliation(s)
- Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China
| | - Chaoyi Liu
- Department of Information, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China
| | - Shanshan Chen
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China
| | - Fen Liu
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China
| | - Wei Li
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China
| | - Dangang Shangguan
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China.
| | - Yingrui Shi
- Department of Radiation Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China.
| |
Collapse
|
8
|
Bode K, MacDonald T, Stewart T, Mendez B, Cai EP, Morrow N, Lee YC, Yi P, Kissler S. Protective Renalase Deficiency in β-Cells Shapes Immune Metabolism and Function in Autoimmune Diabetes. Diabetes 2023; 72:1127-1143. [PMID: 37216639 PMCID: PMC10382656 DOI: 10.2337/db23-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/30/2023] [Indexed: 05/24/2023]
Abstract
Type 1 diabetes (T1D) is caused by the immune-mediated loss of pancreatic β-cells that produce insulin. The latest advances in stem cell (SC) β-cell differentiation methods have made a cell replacement therapy for T1D feasible. However, recurring autoimmunity would rapidly destroy transplanted SC β-cells. A promising strategy to overcome immune rejection is to genetically engineer SC β-cells. We previously identified Renalase (Rnls) as a novel target for β-cell protection. Here we show that Rnls deletion endows β-cells with the capacity to modulate the metabolism and function of immune cells within the local graft microenvironment. We used flow cytometry and single-cell RNA sequencing to characterize β-cell graft-infiltrating immune cells in a mouse model for T1D. Loss of Rnls within transplanted β-cells affected both the composition and the transcriptional profile of infiltrating immune cells in favor of an anti-inflammatory profile with decreased antigen-presenting capacity. We propose that changes in β-cell metabolism mediate local immune regulation and that this feature could be exploited for therapeutic goals. ARTICLE HIGHLIGHTS Protective Renalase (Rnls) deficiency impacts β-cell metabolism. Rnls-deficient β-cell grafts do not exclude immune infiltration. Rnls deficiency in transplanted β-cells broadly modifies local immune function. Immune cell in Rnls mutant β-cell grafts adopt a noninflammatory phenotype.
Collapse
Affiliation(s)
- Kevin Bode
- Section for Immunobiology, Joslin Diabetes Center, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Tara MacDonald
- Section for Immunobiology, Joslin Diabetes Center, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Taylor Stewart
- Department of Medicine, Harvard Medical School, Boston, MA
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA
| | - Bryhan Mendez
- Section for Immunobiology, Joslin Diabetes Center, Boston, MA
| | - Erica P. Cai
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA
| | - Noelle Morrow
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA
| | - Yu-Chi Lee
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA
| | - Peng Yi
- Department of Medicine, Harvard Medical School, Boston, MA
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA
- Diabetes Program, Harvard Stem Cell Institute, Cambridge, MA
| | - Stephan Kissler
- Section for Immunobiology, Joslin Diabetes Center, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Diabetes Program, Harvard Stem Cell Institute, Cambridge, MA
| |
Collapse
|
9
|
Pilśniak A, Otto-Buczkowska E. Type 1 diabetes - What's new in prevention and therapeutic strategies? Pediatr Endocrinol Diabetes Metab 2023; 29:196-201. [PMID: 38031834 PMCID: PMC10679919 DOI: 10.5114/pedm.2023.132028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 04/10/2023] [Indexed: 12/01/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder, and insulin deficiency is the result of b-cell dysfunction. Treatment of type 1 diabetes requires constant parenteral insulin administration, which can be very burdensome for the patient. Meticulous use of insulin therapy does not protect the patient against complications. Hence, the search for other methods of treatment as well as ways of preventing the onset of diabetes has been ongoing for a long time. The main obstacle in the implementation of the prevention task is the need to identify people at risk of developing diabetes before the start of autoimmunity. It seems that primary prevention is still unrealistic at the moment, because we do not know all the factors leading to the activation of autoimmunity processes. Research on the use of late secondary prevention in people who develop glucose tolerance disorders or in the early period after the onset of type 1 diabetes are at the most advanced stage. Gene therapy is another attempt at an alternative treatment and prevention of type 1 diabetes and still requires further research. Recent years have brought a lot of information about the nature of type 1 diabetes and the mechanisms leading to its development. However, it has not yet been established what factors decide about the initiation of autoimmunity and what determines the dynamics of these processes.
Collapse
Affiliation(s)
- Aleksandra Pilśniak
- Department of Internal Medicine, Autoimmune and Metabolic Diseases, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | | |
Collapse
|
10
|
Tang R, Zhong T, Fan L, Xie Y, Li J, Li X. Enhanced T Cell Glucose Uptake Is Associated With Progression of Beta-Cell Function in Type 1 Diabetes. Front Immunol 2022; 13:897047. [PMID: 35677051 PMCID: PMC9168918 DOI: 10.3389/fimmu.2022.897047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background Abnormal intracellular glucose/fatty acid metabolism of T cells has tremendous effects on their immuno-modulatory function, which is related to the pathogenesis of autoimmune diseases. However, the association between the status of intracellular metabolism of T cells and type 1 diabetes is unclear. This study aimed to investigate the uptake of glucose and fatty acids in T cells and its relationship with disease progression in type 1 diabetes. Methods A total of 86 individuals with type 1 diabetes were recruited to detect the uptake of glucose and fatty acids in T cells. 2-NBDG uptake and expression of glucose transporter 1 (GLUT1); or BODIPY uptake and expression of carnitine palmitoyltransferase 1A(CPT1A) were used to assess the status of glucose or fatty acid uptake in T cells. Patients with type 1 diabetes were followed up every 3-6 months for 36 months, the progression of beta-cell function was assessed using generalized estimating equations, and survival analysis was performed to determine the status of beta-cell function preservation (defined as 2-hour postprandial C-peptide >200 pmol/L). Results Patients with type 1 diabetes demonstrated enhanced intracellular glucose uptake of T cells as indicated by higher 2NBDG uptake and GLUT1 expression, while no significant differences in fatty acid uptake were observed. The increased T cells glucose uptake is associated with lower C-peptide and higher hemoglobin A1c levels. Notably, patients with low T cell glucose uptake at onset maintained high levels of C-peptide within 36 months of the disease course [fasting C-petite and 2-hour postprandial C-peptide are 60.6 (95%CI: 21.1-99.8) pmol/L and 146.3 (95%CI: 14.1-278.5) pmol/L higher respectively], And they also have a higher proportion of beta-cell function preservation during this follow-up period (P<0.001). Conclusions Intracellular glucose uptake of T cells is abnormally enhanced in type 1 diabetes and is associated with beta-cell function and its progression.
Collapse
Affiliation(s)
- Rong Tang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ting Zhong
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Fan
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yuting Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Juan Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
11
|
Ding JT, Yang KP, Lin KL, Cao YK, Zou F. Mechanisms and therapeutic strategies of immune checkpoint molecules and regulators in type 1 diabetes. Front Endocrinol (Lausanne) 2022; 13:1090842. [PMID: 36704045 PMCID: PMC9871554 DOI: 10.3389/fendo.2022.1090842] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Considered a significant risk to health and survival, type 1 diabetes (T1D) is a heterogeneous autoimmune disease characterized by hyperglycemia caused by an absolute deficiency of insulin, which is mainly due to the immune-mediated destruction of pancreatic beta cells. SCOPE OF REVIEW In recent years, the role of immune checkpoints in the treatment of cancer has been increasingly recognized, but unfortunately, little attention has been paid to the significant role they play both in the development of secondary diabetes with immune checkpoint inhibitors and the treatment of T1D, such as cytotoxic T-lymphocyte antigen 4(CTLA-4), programmed cell death protein-1(PD-1), lymphocyte activation gene-3(LAG-3), programmed death ligand-1(PD-L1), and T-cell immunoglobulin mucin protein-3(TIM-3). Here, this review summarizes recent research on the role and mechanisms of diverse immune checkpoint molecules in mediating the development of T1D and their potential and theoretical basis for the prevention and treatment of diabetes. MAJOR CONCLUSIONS Immune checkpoint inhibitors related diabetes, similar to T1D, are severe endocrine toxicity induced with immune checkpoint inhibitors. Interestingly, numerous treatment measures show excellent efficacy for T1D via regulating diverse immune checkpoint molecules, including co-inhibitory and co-stimulatory molecules. Thus, targeting immune checkpoint molecules may exhibit potential for T1D treatment and improve clinical outcomes.
Collapse
Affiliation(s)
- Jia-Tong Ding
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Kang-Ping Yang
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Kong-Lan Lin
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Yu-Ke Cao
- School of Ophthalmology & Optometry, Nanchang University, Nanchang, China
| | - Fang Zou
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Fang Zou,
| |
Collapse
|