1
|
Venkitachalam S, Babu D, Ravillah D, Katabathula RM, Joseph P, Singh S, Udhayakumar B, Miao Y, Martinez-Uribe O, Hogue JA, Kresak AM, Dawson D, LaFramboise T, Willis JE, Chak A, Garman KS, Blum AE, Varadan V, Guda K. The Ephrin B2 Receptor Tyrosine Kinase Is a Regulator of Proto-oncogene MYC and Molecular Programs Central to Barrett's Neoplasia. Gastroenterology 2022; 163:1228-1241. [PMID: 35870513 PMCID: PMC9613614 DOI: 10.1053/j.gastro.2022.07.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 06/20/2022] [Accepted: 07/12/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND & AIMS Mechanisms contributing to the onset and progression of Barrett's (BE)-associated esophageal adenocarcinoma (EAC) remain elusive. Here, we interrogated the major signaling pathways deregulated early in the development of Barrett's neoplasia. METHODS Whole-transcriptome RNA sequencing analysis was performed in primary BE, EAC, normal esophageal squamous, and gastric biopsy tissues (n = 89). Select pathway components were confirmed by quantitative polymerase chain reaction in an independent cohort of premalignant and malignant biopsy tissues (n = 885). Functional impact of selected pathway was interrogated using transcriptomic, proteomic, and pharmacogenetic analyses in mammalian esophageal organotypic and patient-derived BE/EAC cell line models, in vitro and/or in vivo. RESULTS The vast majority of primary BE/EAC tissues and cell line models showed hyperactivation of EphB2 signaling. Transcriptomic/proteomic analyses identified EphB2 as an endogenous binding partner of MYC binding protein 2, and an upstream regulator of c-MYC. Knockdown of EphB2 significantly impeded the viability/proliferation of EAC and BE cells in vitro/in vivo. Activation of EphB2 in normal esophageal squamous 3-dimensional organotypes disrupted epithelial maturation and promoted columnar differentiation programs, notably including MYC. EphB2 and MYC showed selective induction in esophageal submucosal glands with acinar ductal metaplasia, and in a porcine model of BE-like esophageal submucosal gland spheroids. Clinically approved inhibitors of MEK, a protein kinase that regulates MYC, effectively suppressed EAC tumor growth in vivo. CONCLUSIONS The EphB2 signaling is frequently hyperactivated across the BE-EAC continuum. EphB2 is an upstream regulator of MYC, and activation of EphB2-MYC axis likely precedes BE development. Targeting EphB2/MYC could be a promising therapeutic strategy for this often refractory and aggressive cancer.
Collapse
Affiliation(s)
- Srividya Venkitachalam
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Deepak Babu
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Durgadevi Ravillah
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Ramachandra M Katabathula
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Peronne Joseph
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Salendra Singh
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Bhavatharini Udhayakumar
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Yanling Miao
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Omar Martinez-Uribe
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Joyce A Hogue
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Adam M Kresak
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Dawn Dawson
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Thomas LaFramboise
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Joseph E Willis
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Amitabh Chak
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio; Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Katherine S Garman
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Andrew E Blum
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio; Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio; Division of Gastroenterology, Northeast Ohio Veteran Affairs Healthcare System, Cleveland, Ohio
| | - Vinay Varadan
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio.
| | - Kishore Guda
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio; Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio.
| |
Collapse
|
2
|
Evans JA, Carlotti E, Lin ML, Hackett RJ, Haughey MJ, Passman AM, Dunn L, Elia G, Porter RJ, McLean MH, Hughes F, ChinAleong J, Woodland P, Preston SL, Griffin SM, Lovat L, Rodriguez-Justo M, Huang W, Wright NA, Jansen M, McDonald SAC. Clonal Transitions and Phenotypic Evolution in Barrett's Esophagus. Gastroenterology 2022; 162:1197-1209.e13. [PMID: 34973296 PMCID: PMC8972067 DOI: 10.1053/j.gastro.2021.12.271] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS Barrett's esophagus (BE) is a risk factor for esophageal adenocarcinoma but our understanding of how it evolves is poorly understood. We investigated BE gland phenotype distribution, the clonal nature of phenotypic change, and how phenotypic diversity plays a role in progression. METHODS Using immunohistochemistry and histology, we analyzed the distribution and the diversity of gland phenotype between and within biopsy specimens from patients with nondysplastic BE and those who had progressed to dysplasia or had developed postesophagectomy BE. Clonal relationships were determined by the presence of shared mutations between distinct gland types using laser capture microdissection sequencing of the mitochondrial genome. RESULTS We identified 5 different gland phenotypes in a cohort of 51 nondysplastic patients where biopsy specimens were taken at the same anatomic site (1.0-2.0 cm superior to the gastroesophageal junction. Here, we observed the same number of glands with 1 and 2 phenotypes, but 3 phenotypes were rare. We showed a common ancestor between parietal cell-containing, mature gastric (oxyntocardiac) and goblet cell-containing, intestinal (specialized) gland phenotypes. Similarly, we have shown a clonal relationship between cardiac-type glands and specialized and mature intestinal glands. Using the Shannon diversity index as a marker of gland diversity, we observed significantly increased phenotypic diversity in patients with BE adjacent to dysplasia and predysplasia compared to nondysplastic BE and postesophagectomy BE, suggesting that diversity develops over time. CONCLUSIONS We showed that the range of BE phenotypes represents an evolutionary process and that changes in gland diversity may play a role in progression. Furthermore, we showed a common ancestry between gastric and intestinal-type glands in BE.
Collapse
Affiliation(s)
- James A Evans
- Clonal Dynamics in Epithelia Laboratory, Queen Mary University of London, London, United Kingdom
| | - Emanuela Carlotti
- Clonal Dynamics in Epithelia Laboratory, Queen Mary University of London, London, United Kingdom
| | - Meng-Lay Lin
- Clonal Dynamics in Epithelia Laboratory, Queen Mary University of London, London, United Kingdom
| | - Richard J Hackett
- Clonal Dynamics in Epithelia Laboratory, Queen Mary University of London, London, United Kingdom
| | - Magnus J Haughey
- School of Mathematical Sciences, Queen Mary University of London, London, United Kingdom
| | - Adam M Passman
- Clonal Dynamics in Epithelia Laboratory, Queen Mary University of London, London, United Kingdom
| | - Lorna Dunn
- Northern Institute for Cancer Research, Newcastle University, Newcastle, United Kingdom
| | - George Elia
- Clonal Dynamics in Epithelia Laboratory, Queen Mary University of London, London, United Kingdom
| | - Ross J Porter
- Department of Gastroenterology, University of Aberdeen, Aberdeen, United Kingdom
| | - Mairi H McLean
- Department of Gastroenterology, University of Aberdeen, Aberdeen, United Kingdom
| | - Frances Hughes
- Department of Surgery, Barts Health NHS Trust, Royal London Hospital, London, United Kingdom
| | - Joanne ChinAleong
- Department of Histopathology, Barts Health NHS Trust, Royal London Hospital, London, United Kingdom
| | - Philip Woodland
- Endoscopy Unit, Barts Health NHS Trust, Royal London Hospital, London, United Kingdom
| | - Sean L Preston
- Endoscopy Unit, Barts Health NHS Trust, Royal London Hospital, London, United Kingdom
| | - S Michael Griffin
- School of Mathematical Sciences, Queen Mary University of London, London, United Kingdom; Royal College of Surgeons of Edinburgh, Edinburgh, United Kingdom
| | - Laurence Lovat
- Oeosophagogastric Disorders Centre, Department of Gastroenterology, University College London Hospitals, London, United Kingdom; Research Department of Tissue and Energy, University College London Division of Surgical and Interventional Science, University College London, London, United Kingdom
| | - Manuel Rodriguez-Justo
- Department of Cellular Pathology, University College London Hospitals, London, United Kingdom
| | - Weini Huang
- School of Mathematical Sciences, Queen Mary University of London, London, United Kingdom
| | - Nicholas A Wright
- Epithelial Stem Cell Laboratory, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Marnix Jansen
- Department of Cellular Pathology, University College London Hospitals, London, United Kingdom; UCL Cancer Institute, University College London, London, United Kingdom
| | - Stuart A C McDonald
- Clonal Dynamics in Epithelia Laboratory, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
3
|
Correia ACP, Calpe S, Mostafavi N, Hoefnagel SJM, Sancho-Serra MDC, de Koning PS, Krishnadath KK. Detection of circulating BMP5 as a risk factor for Barrett's esophagus. Sci Rep 2020; 10:15579. [PMID: 32968094 PMCID: PMC7511298 DOI: 10.1038/s41598-020-70760-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Barrett's esophagus (BE) predisposes for the malignant condition of esophageal adenocarcinoma (EAC). Since BE patients have few or no symptoms, most of these patients are not identified and not included in surveillance programs. These BE patients are at risk of developing advanced-stage EAC. At present, non-invasive tests to identify BE patients from the general population are lacking. We and others showed that Bone Morphogenetic Protein 4 (BMP4), and other BMPs are upregulated in BE. We aimed to determine if circulating BMPs can be identified and used as blood biomarkers to identify BE patients at high risk in the general population. In this study, we could detect the different BMPs in the blood of 112 BE patients and 134 age- and sex-matched controls. Concentration levels of BMP2, BMP4, and BMP5 were elevated in BE patients, with BMP2 and BMP5 significantly increased. BMP5 remained significant after multivariate analysis and was associated with an increased risk for BE with an OR of 1.49 (p value 0.01). Per log (pg/mL) of BMP5, the odds of having BE increased by 50%. Future optimization and validation studies might be needed to prove its utility as a non-invasive method for the detection of BE in high-risk populations and screening programs.
Collapse
Affiliation(s)
- Ana C P Correia
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Silvia Calpe
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Nahid Mostafavi
- Department of Gastroenterology and Hepatology, Subdivision Statistics, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Sanne Johanna Maria Hoefnagel
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Maria Del Carmen Sancho-Serra
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands.,Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Patricia S de Koning
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Kausilia K Krishnadath
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands. .,Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Hanke R, Comba I, Henriquez R, W Crespo M, Bhatia L. Salivary Gland Choristoma: A Rare Finding at the Gastroesophageal Junction. Cureus 2020; 12:e7138. [PMID: 32257683 PMCID: PMC7105256 DOI: 10.7759/cureus.7138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A choristoma is a tumor-like outgrowth consisting of heterotopic, histologically mature tissue located at an anatomically unusual part of the body. Salivary gland choristoma at the gastrointestinal junction (GEJ) is an extremely rare entity with only one other case reported in the literature. In this report, we present the case of an 87-year-old female with long-standing gastroesophageal reflux disease (GERD) history who was incidentally found to have salivary gland choristoma at GEJ through an upper endoscopy-guided biopsy. We suggest that the finding of salivary gland choristoma at the GEJ could be metaplasia secondary to the patient’s long-standing history of GERD with esophagitis.
Collapse
Affiliation(s)
- Rachel Hanke
- Internal Medicine, University of Central Florida College of Medicine, Orlando, USA
| | - Isin Comba
- Internal Medicine, University of Central Florida College of Medicine, Orlando, USA
| | - Richard Henriquez
- Internal Medicine, University of Central Florida/HCA Healthcare GME, Orlando, USA
| | - Maria W Crespo
- Pathology, Osceola Regional Medical Center, Kissimmee, USA
| | - Lakhinder Bhatia
- Internal Medicine, University of Central Florida College of Medicine, Orlando, USA
| |
Collapse
|
5
|
Yuan S, Norgard RJ, Stanger BZ. Cellular Plasticity in Cancer. Cancer Discov 2019; 9:837-851. [PMID: 30992279 DOI: 10.1158/2159-8290.cd-19-0015] [Citation(s) in RCA: 278] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022]
Abstract
During cancer progression, tumor cells undergo molecular and phenotypic changes collectively referred to as cellular plasticity. Such changes result from microenvironmental cues, stochastic genetic and epigenetic alterations, and/or treatment-imposed selective pressures, thereby contributing to tumor heterogeneity and therapy resistance. Epithelial-mesenchymal plasticity is the best-known case of tumor cell plasticity, but recent work has uncovered other examples, often with functional consequences. In this review, we explore the nature and role(s) of these diverse cellular plasticity programs in premalignant progression, tumor evolution, and adaptation to therapy and consider ways in which targeting plasticity could lead to novel anticancer treatments. SIGNIFICANCE: Changes in cell identity, or cellular plasticity, are common at different stages of tumor progression, and it has become clear that cellular plasticity can be a potent mediator of tumor progression and chemoresistance. Understanding the mechanisms underlying the various forms of cell plasticity may deliver new strategies for targeting the most lethal aspects of cancer: metastasis and resistance to therapy.
Collapse
Affiliation(s)
- Salina Yuan
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert J Norgard
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ben Z Stanger
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania. .,Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|