1
|
Yu W, Zhou H, Feng X, Liang X, Wei D, Xia T, Yang B, Yan L, Zhao X, Liu H. Mesenchymal stem cell secretome-loaded fibrin glue improves the healing of intestinal anastomosis. Front Bioeng Biotechnol 2023; 11:1103709. [PMID: 37064233 PMCID: PMC10102583 DOI: 10.3389/fbioe.2023.1103709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Anastomotic leakage is a serious complication following gastrointestinal surgery and one of the leading causes of patient mortality. Despite the significant clinical and economic burden, there are currently no reliable treatment options to improve the healing of intestinal anastomosis and subsequently prevent anastomotic leakage. Recently, the development of regenerative medicine has shown promise for improving anastomotic healing. Recent studies have illustrated that stem cell-derived secretome can enhance tissue regeneration without the safety and ethical limitations of stem cell transplantation. Herein, we developed a fibrin glue topical delivery system loaded with mesenchymal stem cells (MSCs)-derived secretome for controlled delivery of bioactive factors, and evaluated its application potential in improving the healing of intestinal anastomosis. Under in vitro conditions, the MSCs secretome significantly promoted cell proliferation viability in a dose-dependent manner and resulted in the controlled release of growth factors via fibrin glue delivery. We established a rat surgical anastomotic model and experimentally found that MSCs secretome-loaded fibrin glue enhanced anastomotic bursting pressure, increased granulation tissue formation and collagen deposition, and significantly promoted anastomotic healing. Mechanistically, fibrin glue accelerated cell proliferation, angiogenesis, and macrophage M2 polarization at the surgical anastomotic site by releasing bioactive factors in the secretome, and it also alleviated the inflammatory response and cell apoptosis at the anastomotic site. Our results demonstrated for the first time that MSCs-derived secretome could promote the healing of intestinal anastomosis. Considering the accessibility and safety of the cell-free secretome, we believed that secretome-loaded fibrin glue would be a cell-free therapy to accelerate the healing of intestinal anastomosis with great potential for clinical translation.
Collapse
Affiliation(s)
- Wenwen Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Haicun Zhou
- Department of Breast Surgery, Gansu Maternal and Child Healthcare Hospital, Lanzhou, China
| | - Xueliang Feng
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaoqin Liang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Dengwen Wei
- Department of Abdominal Surgery, Gansu Provincial Cancer Hospital, Gansu Provincial Academic Institute for Medical Research, Lanzhou, China
| | - Tianhong Xia
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Bin Yang
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Long Yan
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Xiaochen Zhao
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Hongbin Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Shi MY, Liu L, Yang FY. Strategies to improve the effect of mesenchymal stem cell therapy on inflammatory bowel disease. World J Stem Cells 2022; 14:684-699. [PMID: 36188115 PMCID: PMC9516464 DOI: 10.4252/wjsc.v14.i9.684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/07/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) includes Crohn’s disease and ulcerative colitis and is an idiopathic, chronic inflammatory disease of the colonic mucosa. The occurrence of IBD, causes irreversible damage to the colon and increases the risk of carcinoma. The routine clinical treatment of IBD includes drug treatment, endoscopic treatment and surgery. The vast majority of patients are treated with drugs and biological agents, but the complete cure of IBD is difficult. Mesenchymal stem cells (MSCs) have become a new type of cell therapy for the treatment of IBD due to their immunomodulatory and nutritional functions, which have been confirmed in many clinical trials. This review discusses some potential mechanisms of MSCs in the treatment of IBD, summarizes the experimental results, and provides new insights to enhance the therapeutic effects of MSCs in future applications.
Collapse
Affiliation(s)
- Meng-Yue Shi
- School of Medicine, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Lian Liu
- Department of Pharmacology, Medical School of Yangtze University, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Fu-Yuan Yang
- Health Science Center, Yangtze University, Jingzhou 434020, Hubei Province, China
| |
Collapse
|
3
|
Wang S, Lei B, Zhang E, Gong P, Gu J, He L, Han L, Yuan Z. Targeted Therapy for Inflammatory Diseases with Mesenchymal Stem Cells and Their Derived Exosomes: From Basic to Clinics. Int J Nanomedicine 2022; 17:1757-1781. [PMID: 35469174 PMCID: PMC9034888 DOI: 10.2147/ijn.s355366] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/09/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a beneficial and physiological process, but there are a number of inflammatory diseases which have detrimental effects on the body. In addition, the drugs used to treat inflammation have toxic side effects when used over a long period of time. Mesenchymal stem cells (MSCs) are pluripotent stem cells that can be isolated from a variety of tissues and can be differentiate into diverse cell types under appropriate conditions. They also exhibit noteworthy anti-inflammatory properties, providing new options for the treatment of inflammatory diseases. The therapeutic potential of MSCs is currently being investigated for various inflammatory diseases, such as kidney injury, lung injury, osteoarthritis (OA), rheumatoid arthritis (RA), and inflammatory bowel disease (IBD). MSCs can perform multiple functions, including immunomodulation, homing, and differentiation, to enable damaged tissues to form a balanced inflammatory and regenerative microenvironment under severe inflammatory conditions. In addition, accumulated evidence indicates that exosomes from extracellular vesicles of MSCs (MSC-Exos) play an extraordinary role, mainly by transferring their components to recipient cells. In this review, we summarize the mechanism and clinical trials of MSCs and MSC-Exos in various inflammatory diseases in detail, with a view to contributing to the treatment of MSCs and MSC-Exos in inflammatory diseases.
Collapse
Affiliation(s)
- Shuo Wang
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, Sichuan, People’s Republic of China
| | - Biyu Lei
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, Sichuan, People’s Republic of China
| | - E Zhang
- Department of Basic Sciences, Officers College of People’s Armed Police, Chengdu, Sichuan, 610213, People’s Republic of China
| | - Puyang Gong
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, Sichuan, People’s Republic of China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, Sichuan, People’s Republic of China
| | - Lili He
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, Sichuan, People’s Republic of China
| | - Lu Han
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, Sichuan, People’s Republic of China
| | - Zhixiang Yuan
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, Sichuan, People’s Republic of China
| |
Collapse
|
4
|
Munoz-Perez E, Gonzalez-Pujana A, Igartua M, Santos-Vizcaino E, Hernandez RM. Mesenchymal Stromal Cell Secretome for the Treatment of Immune-Mediated Inflammatory Diseases: Latest Trends in Isolation, Content Optimization and Delivery Avenues. Pharmaceutics 2021; 13:pharmaceutics13111802. [PMID: 34834217 PMCID: PMC8617629 DOI: 10.3390/pharmaceutics13111802] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Considering the high prevalence and the complex pharmacological management of immune-mediated inflammatory diseases (IMIDs), the search for new therapeutic approaches for their treatment is vital. Although the immunomodulatory and anti-inflammatory effects of mesenchymal stromal cells (MSCs) have been extensively studied as a potential therapy in this field, direct MSC implantation presents some limitations that could slow down the clinical translation. Since the beneficial effects of MSCs have been mainly attributed to their ability to secrete a plethora of bioactive factors, their secretome has been proposed as a new and promising pathway for the treatment of IMIDs. Formed from soluble factors and extracellular vesicles (EVs), the MSC-derived secretome has been proven to elicit immunomodulatory effects that control the inflammatory processes that occur in IMIDs. This article aims to review the available knowledge on the MSC secretome, evaluating the advances in this field in terms of its composition, production and application, as well as analyzing the pending challenges in the field. Moreover, the latest research involving secretome administration in IMIDs is discussed to provide an updated state-of-the-art for this field. Finally, novel secretome delivery alternatives are reviewed, paying special attention to hydrogel encapsulation as one of the most convenient and promising strategies.
Collapse
Affiliation(s)
- Elena Munoz-Perez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
| | - Ainhoa Gonzalez-Pujana
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Correspondence: (E.S.-V.); (R.M.H.)
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Correspondence: (E.S.-V.); (R.M.H.)
| |
Collapse
|
5
|
Herb-partitioned moxibustion alleviates colonic inflammation in Crohn's disease rats by inhibiting hyperactivation of the NLRP3 inflammasome via regulation of the P2X7R-Pannexin-1 signaling pathway. PLoS One 2021; 16:e0252334. [PMID: 34043726 PMCID: PMC8158928 DOI: 10.1371/journal.pone.0252334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/12/2021] [Indexed: 01/12/2023] Open
Abstract
Crohn's disease is a chronic inflammatory bowel disease and the NLRP3 inflammasome plays an important role in Crohn's disease. Previous studies have shown that Herb-partitioned moxibustion treating (at Qihai (CV 6) and Tianshu (ST 25)) prevented the excessive activation of the NLRP3 inflammasome and repaired damaged colonic mucosa in Crohn's disease. However, the mechanism by which Herb-partitioned moxibustion (at CV 6 and ST 25) regulates NLRP3 remains unclear. In this study, we treated Crohn's disease rats with herb-partitioned moxibustion (at CV 6 and ST 25) to investigate the mechanism by which Herb-partitioned moxibustion regulates the colonic NLRP3 inflammasome by observing colon length, the colon macroscopic damage indexes, and the expression of ATP, P2X7R, Pannexin-1, NF-κBp65, NLRP3, ASC, caspase-1, IL-1β and IL-18 in the colon in Crohn's disease. Here, this study shows that herb-partitioned moxibustion (at CV 6 and ST 25) can reduce colon macroscopic damage indexes and colon histopathological scores, alleviate colon shortening and block the abnormal activation of the NLRP3 inflammasome by inhibiting the ATP content and the expression of P2X7R, Pannexin-1 and NF-κBp65, thereby reducing the release of the downstream inflammatory cytokine IL-1β and ultimately suppressing colonic inflammation in Crohn's disease rats. This study for the first time identifies the mechanism by which herb-partitioned moxibustion (at CV 6 and ST 25) may inhibit the abnormal activation of the NLRP3 inflammasome by inhibiting the P2X7R-Pannexin-1 signaling pathway in Crohn's disease rats.
Collapse
|
6
|
Ito G, Yui S, Okamoto R. A Cellular "Hub" Function to Resolve Colitis. Cell Mol Gastroenterol Hepatol 2021; 12:789-790. [PMID: 33971162 PMCID: PMC8348527 DOI: 10.1016/j.jcmgh.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/10/2022]
Affiliation(s)
| | - Shiro Yui
- Department of Gastroenterology and Hepatology, Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
7
|
Khan S, Khan RS, Newsome PN. Cellular therapies for the treatment of immune-mediated GI and liver disease. Br Med Bull 2020; 136:127-141. [PMID: 33290518 DOI: 10.1093/bmb/ldaa035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Immune-mediated liver and gastrointestinal diseases are chronic conditions that lack curative treatments. Despite advances in the understanding and treatment of these conditions, they frequently remain refractory to treatment and represent a significant unmet need. Cellular therapies are an emerging option and hold the potential to have a major impact. DATA SOURCES A literature review was carried out using Pubmed. Keywords used for search were 'ATMP', 'immune mediated', 'autoimmune liver disease' and 'immune mediated gastrointestinal conditions', 'cell therapy', 'MSC', 'HSCT', 'Regulatory T cells', 'GVHD', 'Coeliac disease' 'IBD', 'PSC', 'AIH', 'PBC'. No new data were generated or analysed in support of this review. AREAS OF AGREEMENT There is substantial evidence from clinical trials to support the use of cell therapies as a treatment for immune-mediated liver and gastrointestinal conditions. Cellular therapy products have the ability to 'reset' the dysregulated immune system and this in turn can offer a longer term remission. There are ongoing clinical trials with mesenchymal stromal cells (MSCs) and other cells to evidence their efficacy profile and fill the gaps in current knowledge. Insights gained will inform future trial designs and subsequent therapeutic applications. AREAS OF CONTROVERSY There remains some uncertainty around the extrapolation of results from animal studies to clinical trials. Longevity of the therapeutic effects seen after the use of cell therapy needs to be scrutinized further. Heterogeneity in the selection of cells, source, methods of productions and cell administration pose challenges to the interpretation of the data. GROWING POINTS MSCs are emerging as a key therapeutic cells in immune-mediated liver and gastrointestinal conditions. Ongoing trials with these cells will provide new insights and a better understanding thus informing future larger scale studies. AREAS TIMELY FOR DEVELOPING RESEARCH Larger scale clinical trials to build on the evidence from small studies regarding safety and efficacy of cellular therapy are still needed before cellular therapies can become off the shelf treatments. Alignment of academia and industry to standardize the processes involved in cell selection, manipulation and expansion and subsequent use in clinical trials is an important avenue to explore further.
Collapse
Affiliation(s)
- Sheeba Khan
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, UK.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Reenam S Khan
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, UK.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Philip N Newsome
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, UK.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
8
|
Fujimoto Y, Yokozeki T, Yokoyama A, Tabata Y. Basic fibroblast growth factor enhances proliferation and hepatocyte growth factor expression of feline mesenchymal stem cells. Regen Ther 2020; 15:10-17. [PMID: 32490062 PMCID: PMC7256438 DOI: 10.1016/j.reth.2020.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/26/2020] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction The objective of this study is to evaluate the effect of basic fibroblast growth factor (bFGF) on the proliferation and secretion activity of feline adipose-derived mesenchymal stem cells (MSC). Methods Feline MSC isolated from the subcutaneous adipose tissue of cats were cultured with or without bFGF. Results The bFGF addition enhanced the proliferation of feline MSC to a significant great extent compared with that without bFGF, although the cell proliferation tended to increase with the bFGF concentration. In addition, adipogenic and osteogenic staining assay demonstrated that the bFGF addition allowed MSC to maintain the differentiation ability even after the proliferation. Moreover, no change in the surface markers of MSC was observed between the cultures with or without bFGF. A quantitative RT-PCR assay revealed that the HGF and TSG-6 expression significantly increased by the bFGF addition. The highest mRNA expression of MMP-2 was observed for cells cultured in 1000 ng/ml bFGF concentration. Conclusions The culture with bFGF is a promising way to enhance the proliferation, and HGF secretion ability of MSC as well as maintain their differentiation ability and immunophenotype nature. Feline adipose-derived mesenchymal stem cells (MSC) was cultured with or without the basic fibroblast growth factor (bFGF). The bFGF enhanced the proliferation and increased the mRNA expression of HGF, TSG-6, and MMP-2. The bFGF addition was not influenced to the differentiation ability and cell surface marker of MSC.
Collapse
Key Words
- Basic fibroblast growth factor
- CKD, chronic kidney disease
- ECM, extracellular matrix
- FBS, fetal bovine serum
- FGF, basic fibroblast growth factor
- Feline
- GAPDH, gliyceraldehyde-3-phosphate dehydrogenase
- HGF, hepatocyte growth factor
- Hepatocyte growth factor
- MMP-2, matrix metalloproteinase-2
- MSC, mesenchymal stem cells
- Mesenchymal stem cell
- P1, passage 1
- Proliferation
- SVF, stromal vascular fraction
- TSG-6, tumor necrosis factor-stimulated gene 6
- Tumor necrosis factor-stimulated gene 6
Collapse
Affiliation(s)
- Youhei Fujimoto
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan.,Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Intercellular adhesion molecule-1 enhances the therapeutic effects of MSCs in a dextran sulfate sodium-induced colitis models by promoting MSCs homing to murine colons and spleens. Stem Cell Res Ther 2019; 10:267. [PMID: 31443680 PMCID: PMC6708236 DOI: 10.1186/s13287-019-1384-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/04/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022] Open
Abstract
Background To investigate the therapeutic effect of intercellular adhesion molecule (ICAM)-1-modified mesenchymal stem cells (MSCs) in a mouse model of inflammatory bowel disease (IBD) induced by dextran sulfate sodium. Methods Primary MSCs and ICAM-1-overexpressing MSCs (C3 cells) were generated in vitro. The IBD mouse model was induced with drinking water containing dextran sulfate sodium for 7 days. For stem cell therapy, mice were randomly assigned to six experimental groups: the control group, IBD group, primary MSC group, C3 group, C3-vector group, and C3-ICAM-1 group. Mice were given a single injection of 1 × 106 primary MSCs or gene-modified MSCs via the tail vein on day 3 of DDS administration. The general conditions of the mice in each group were observed. Additionally, the pathological changes in the colon were observed and scored. Primary MSCs and gene-modified MSCs were stained with the fluorescent dye CM-DIL before injection into the tail vein of mice. The distribution of infused cells in IBD mice was observed in frozen sections. Mechanistically, the polarization of Th1, Th2, Th17, and regulatory T cells (Tregs) in the spleen was determined by flow cytometry. Moreover, the mRNA expression levels of IBD-related immune factors in splenocytes were measured by quantitative PCR. Results A single injection of MSCs promoted general recovery and reduced pathological damage in IBD mice. Additionally, ICAM-1-overexpressing MSCs had stronger therapeutic effects than ICAM-1low MSCs. Furthermore, the in vivo distribution analysis results indicated that a higher number of ICAM-1-overexpressing MSCs homed to the colon and spleen of IBD mice. Moreover, the delivery of ICAM-1 overexpressing MSCs decreased the numbers of Th1 and Th17 cells but increased the number of Tregs in the spleen of IBD mice. The quantitative PCR analysis results revealed that an infusion of ICAM-1-overexpressing MSCs influenced the expression of spleen-derived immune factors by remarkably reducing the mRNA levels of IFN-γ and IL-17A and increasing the mRNA level of Foxp3. Conclusions Our results demonstrate that ICAM-1-modified mesenchymal stem cells (MSCs) remarkably alleviate inflammatory damage in IBD mice by promoting MSC homing to the target and immune organs. The findings suggest that ICAM-1 is required to maintain the therapeutic effects of MSCs in IBD treatment and identified a novel role of ICAM-1 in inflammatory diseases. Electronic supplementary material The online version of this article (10.1186/s13287-019-1384-9) contains supplementary material, which is available to authorized users.
Collapse
|