1
|
Yin T, Zhang X, Xiong Y, Li B, Guo D, Sha Z, Lin X, Wu H. Exploring gut microbial metabolites as key players in inhibition of cancer progression: Mechanisms and therapeutic implications. Microbiol Res 2024; 288:127871. [PMID: 39137590 DOI: 10.1016/j.micres.2024.127871] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
The gut microbiota plays a critical role in numerous biochemical processes essential for human health, such as metabolic regulation and immune system modulation. An increasing number of research suggests a strong association between the gut microbiota and carcinogenesis. The diverse metabolites produced by gut microbiota can modulate cellular gene expression, cell cycle dynamics, apoptosis, and immune system functions, thereby exerting a profound influence on cancer development and progression. A healthy gut microbiota promotes substance metabolism, stimulates immune responses, and thereby maintains the long-term homeostasis of the intestinal microenvironment. When the gut microbiota becomes imbalanced and disrupts the homeostasis of the intestinal microenvironment, the risk of various diseases increases. This review aims to elucidate the impact of gut microbial metabolites on cancer initiation and progression, focusing on short-chain fatty acids (SCFAs), polyamines (PAs), hydrogen sulfide (H2S), secondary bile acids (SBAs), and microbial tryptophan catabolites (MTCs). By detailing the roles and molecular mechanisms of these metabolites in cancer pathogenesis and therapy, this article sheds light on dual effects on the host at different concentrations of metabolites and offers new insights into cancer research.
Collapse
Affiliation(s)
- Tianxiang Yin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiang Zhang
- Medical School, Yan'an University, Yan'an 716000, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Bohao Li
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhou Sha
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoyuan Lin
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
2
|
Tuohongerbieke A, Wang H, Wu J, Wang Z, Dong T, Huang Y, Zhu D, Sun D, Tsim KWK. Xiao Cheng Qi Decoction, an Ancient Chinese Herbal Mixture, Relieves Loperamide-Induced Slow-Transit Constipation in Mice: An Action Mediated by Gut Microbiota. Pharmaceuticals (Basel) 2024; 17:153. [PMID: 38399368 PMCID: PMC10892578 DOI: 10.3390/ph17020153] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Xiao Cheng Qi (XCQ) decoction, an ancient Chinese herbal mixture, has been used in treating slow-transit constipation (STC) for years. The underlying action mechanism in relieving the clinical symptoms is unclear. Several lines of evidence point to a strong link between constipation and gut microbiota. Short-chain fatty acids (SCFAs) and microbial metabolites have been shown to affect 5-HT synthesis by activating the GPR43 receptor localized on intestinal enterochromaffin cells, since 5-HT receptors are known to influence colonic peristalsis. The objective of this study was to evaluate the efficacy of XCQ in alleviating clinical symptoms in a mouse model of STC induced by loperamide. The application of loperamide leads to a decrease in intestinal transport and fecal water, which is used to establish the animal model of STC. In addition, the relationship between constipation and gut microbiota was determined. The herbal materials, composed of Rhei Radix et Rhizoma (Rhizomes of Rheum palmatum L., Polygonaceae) 55.2 g, Magnoliae Officinalis Cortex (Barks of Magnolia officinalis Rehd. et Wils, Magnoliaceae) 27.6 g, and Aurantii Fructus Immaturus (Fruitlet of Citrus aurantium L., Rutaceae) 36.0 g, were extracted with water to prepare the XCQ decoction. The constipated mice were induced with loperamide (10 mg/kg/day), and then treated with an oral dose of XCQ herbal extract (2.0, 4.0, and 8.0 g/kg/day) two times a day. Mosapride was administered as a positive drug. In loperamide-induced STC mice, the therapeutic parameters of XCQ-treated mice were determined, i.e., (i) symptoms of constipation, composition of gut microbiota, and amount of short-chain fatty acids in feces; (ii) plasma level of 5-HT; and (iii) expressions of the GPR43 and 5-HT4 receptor in colon. XCQ ameliorated the constipation symptoms of loperamide-induced STC mice. In gut microbiota, the treatment of XCQ in STC mice increased the relative abundances of Lactobacillus, Prevotellaceae_UCG_001, Prevotellaceae_NK3B31_group, Muribaculaceae, and Roseburia in feces and decreased the relative abundances of Desulfovibrio, Tuzzerella, and Lachnospiraceae_ NK4A136_group. The levels of SCFAs in stools from the STC group were significantly lower than those the control group, and were greatly elevated via treatment with XCQ. Compared with the STC group, XCQ increased the plasma level of 5-HT and the colonic expressions of the GPR43 and 5-HT4 receptor, significantly. The underlying mechanism of XCQ in anti-constipation could be related to the modulation of gut microbiota, the increase in SCFAs, the increase in plasma 5-HT, and the colonic expressions of the GPR43 and 5-HT4 receptor. Our results indicate that XCQ is a potent natural product that could be a therapeutic strategy for constipation.
Collapse
Affiliation(s)
- Amanguli Tuohongerbieke
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen 518057, China; (A.T.); (H.W.); (J.W.); (T.D.); (Y.H.)
| | - Huaiyou Wang
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen 518057, China; (A.T.); (H.W.); (J.W.); (T.D.); (Y.H.)
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Jiahui Wu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen 518057, China; (A.T.); (H.W.); (J.W.); (T.D.); (Y.H.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China;
| | - Zhengqi Wang
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China;
| | - Tingxia Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen 518057, China; (A.T.); (H.W.); (J.W.); (T.D.); (Y.H.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China;
| | - Yamiao Huang
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen 518057, China; (A.T.); (H.W.); (J.W.); (T.D.); (Y.H.)
| | - Dequan Zhu
- Guangdong Efong Pharmaceutical Co., Ltd., Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Formula Granule, Foshan 528244, China; (D.Z.); (D.S.)
| | - Dongmei Sun
- Guangdong Efong Pharmaceutical Co., Ltd., Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Formula Granule, Foshan 528244, China; (D.Z.); (D.S.)
| | - Karl Wah Keung Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen 518057, China; (A.T.); (H.W.); (J.W.); (T.D.); (Y.H.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China;
| |
Collapse
|
3
|
Saeed M, Afzal Z, Afzal F, Khan RU, Elnesr SS, Alagawany M, Chen H. Use of Postbiotic as Growth Promoter in Poultry Industry: A Review of Current Knowledge and Future Prospects. Food Sci Anim Resour 2023; 43:1111-1127. [PMID: 37969321 PMCID: PMC10636223 DOI: 10.5851/kosfa.2023.e52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/23/2023] [Accepted: 09/07/2023] [Indexed: 11/17/2023] Open
Abstract
Health-promoting preparations of inanimate microorganisms or their components are postbiotics. Since probiotics are sensitive to heat and oxygen, postbiotics are stable during industrial processing and storage. Postbiotics boost poultry growth, feed efficiency, intestinal pathogen reduction, and health, making them acceptable drivers of sustainable poultry production. It contains many important biological properties, such as immunomodulatory, antioxidant, and anti-inflammatory responses. Postbiotics revealed promising antioxidant effects due to higher concentrations of uronic acid and due to some enzyme's production of antioxidants, e.g., superoxide dismutase, glutathione peroxidase, and nicotinamide adenine dinucleotide oxidases and peroxidases. Postbiotics improve intestinal villi, increase lactic acid production, and reduce Enterobacteriaceae and fecal pH, all of which lead to a better immune reaction and health of the gut, as well as better growth performance. P13K/AKT as a potential target pathway for postbiotics-improved intestinal barrier functions. Similarly, postbiotics reduce yolk and plasma cholesterol levels in layers and improve egg quality. It was revealed that favorable outcomes were obtained with various inclusion levels at 1 kg and 0.5 kg. According to several studies, postbiotic compounds significantly increased poultry performance. This review article presents the most recent research investigating the beneficial results of postbiotics in poultry.
Collapse
Affiliation(s)
- Muhammad Saeed
- School of Life Sciences, Jiangsu
University, Zhenjiang 212013, China
| | - Zoya Afzal
- Department of Poultry Science, Faculty of
Animal Production and Technology, The Cholistan University of Veterinary and
Animal Sciences, Bahawalpur 63100, Pakistan
| | - Fatima Afzal
- Department of Life Sciences, Sogang
University, Seoul 04107, Korea
| | - Rifat Ullah Khan
- College of Veterinary Sciences, Faculty of
Animal Husbandry and Veterinary Sciences, The University of Agriculture
Peshawar, Peshawar 25120, Pakistan
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty
of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of
Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Huayou Chen
- School of Life Sciences, Jiangsu
University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Rettura F, Lambiase C, Grosso A, Rossi A, Tedeschi R, Ceccarelli L, Bellini M. Role of Low-FODMAP diet in functional dyspepsia: "Why", "When", and "to Whom". Best Pract Res Clin Gastroenterol 2023; 62-63:101831. [PMID: 37094910 DOI: 10.1016/j.bpg.2023.101831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/26/2023]
Abstract
Functional dyspepsia (FD) is a frequent disorder of gut-brain interaction, affecting 5-7% of people globally, with significant impairment in quality of life. The management of FD is challenging due to the lack of specific therapeutic approaches. Although food seems to play a role in symptom production, its pathophysiologic role in patients with FD is not fully understood. Most FD patients report that their symptoms are triggered by food, especially in the post-prandial distress syndrome (PDS) group, although evidence to support the use of dietary interventions are limited. FODMAPs can increase production of gas in the intestinal lumen, through fermentation by intestinal bacteria, can exert osmotic effects by increasing water volume and can cause an excessive production of short-chain fatty acids (propionate, butyrate, and acetate). Emerging scientific evidence, confirmed by recent clinical trials, suggest that FODMAPs could be involved in the pathogenesis of FD. Given the consolidated approach of the Low-FODMAP Diet (LFD) in irritable bowel syndrome (IBS) management and emerging scientific evidence regarding the LFD in FD, a therapeutic role of this diet may be hypothesized also in FD, either alone or in combination with other therapies.
Collapse
Affiliation(s)
- Francesco Rettura
- Gastrointestinal Unit, Department of Translational Sciences and New Technologies in Medicine and Surgery, University of Pisa, 56010, Pisa, Italy
| | - Christian Lambiase
- Gastrointestinal Unit, Department of Translational Sciences and New Technologies in Medicine and Surgery, University of Pisa, 56010, Pisa, Italy.
| | - Antonio Grosso
- Gastrointestinal Unit, Department of Translational Sciences and New Technologies in Medicine and Surgery, University of Pisa, 56010, Pisa, Italy
| | - Alessandra Rossi
- Clinical and Experimental Medicine-Rheumatology Unit, University of Pisa, 56100, Pisa, Italy
| | - Riccardo Tedeschi
- Gastrointestinal Unit, Department of Translational Sciences and New Technologies in Medicine and Surgery, University of Pisa, 56010, Pisa, Italy
| | - Linda Ceccarelli
- Gastrointestinal Unit, Department of Translational Sciences and New Technologies in Medicine and Surgery, University of Pisa, 56010, Pisa, Italy
| | - Massimo Bellini
- Gastrointestinal Unit, Department of Translational Sciences and New Technologies in Medicine and Surgery, University of Pisa, 56010, Pisa, Italy
| |
Collapse
|
5
|
Functional Implications and Clinical Potential of MicroRNAs in Irritable Bowel Syndrome: A Concise Review. Dig Dis Sci 2023; 68:38-53. [PMID: 35507132 PMCID: PMC9066399 DOI: 10.1007/s10620-022-07516-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023]
Abstract
MicroRNAs (miRNAs) are tiny (20-24 nucleotides long), non-coding, highly conserved RNA molecules that play a crucial role within the post-transcriptional regulation of gene expression via sequence-specific mechanisms. Since the miRNA transcriptome is involved in multiple molecular processes needed for cellular homeostasis, its altered expression can trigger the development and progression of several human pathologies. In this context, over the last few years, several relevant studies have demonstrated that dysregulated miRNAs affect a wide range of molecular mechanisms associated with irritable bowel syndrome (IBS), a common gastrointestinal disorder. For instance, abnormal miRNA expression in IBS patients is related to the alteration of intestinal permeability, visceral hyperalgesia, inflammatory pathways, and pain sensitivity. Besides, specific miRNAs are differentially expressed in the different subtypes of IBS, and therefore, they might be used as biomarkers for precise diagnosis of these pathological conditions. Accordingly, miRNAs have noteworthy potential as theragnostic targets for IBS. Hence, in this current review, we present an overview of the recent discoveries regarding the clinical relevance of miRNAs in IBS, which might be useful in the future for the development of miRNA-based drugs against this disorder.
Collapse
|
6
|
Feng Y, Hang L, Zhou Y, Jiang FR, Yuan JY. Gut microbiota plays a role in irritable bowel syndrome by regulating 5-HT metabolism. Shijie Huaren Xiaohua Zazhi 2022; 30:941-949. [DOI: 10.11569/wcjd.v30.i21.941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common chronic functional gastrointestinal disorder. Brain-gut-microbiota axis dysfunction is an important pathogenic factor for IBS, in which neurotransmitters and gut microbes play key roles. The gastrointestinal tract contains large amounts of serotonin (5-hydroxytryptamine, 5-HT), a neurotransmitter that has been strongly linked to IBS-related symptoms. More than 90% of serotonin is synthesized in the gut by enterochromaffin cells (ECs), and certain intestinal flora can affect the occurrence and development of IBS by regulating 5-HT and its metabolism. In this review, we will discuss the role of gut microbiota in IBS by regulating 5-HT.
Collapse
Affiliation(s)
- Ya Feng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lu Hang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yan Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Feng-Ru Jiang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jian-Ye Yuan
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
7
|
Duncanson K, Burns G, Pryor J, Keely S, Talley NJ. Mechanisms of Food-Induced Symptom Induction and Dietary Management in Functional Dyspepsia. Nutrients 2021; 13:1109. [PMID: 33800668 PMCID: PMC8066021 DOI: 10.3390/nu13041109] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Functional dyspepsia (FD) is a common disorder of gut-brain interaction, characterised by upper gastrointestinal symptom profiles that differentiate FD from the irritable bowel syndrome (IBS), although the two conditions often co-exist. Despite food and eating being implicated in FD symptom induction, evidence-based guidance for dietetic management of FD is limited. The aim of this narrative review is to collate the possible mechanisms for eating-induced and food-related symptoms of FD for stratification of dietetic management. Specific carbohydrates, proteins and fats, or foods high in these macronutrients have all been reported as influencing FD symptom induction, with removal of 'trigger' foods or nutrients shown to alleviate symptoms. Food additives and natural food chemicals have also been implicated, but there is a lack of convincing evidence. Emerging evidence suggests the gastrointestinal microbiota is the primary interface between food and symptom induction in FD, and is therefore a research direction that warrants substantial attention. Objective markers of FD, along with more sensitive and specific dietary assessment tools will contribute to progressing towards evidence-based dietetic management of FD.
Collapse
Affiliation(s)
- Kerith Duncanson
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (G.B.); (J.P.); (S.K.)
- Centre for Research Excellence, Digestive Health, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Grace Burns
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (G.B.); (J.P.); (S.K.)
- Centre for Research Excellence, Digestive Health, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Jennifer Pryor
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (G.B.); (J.P.); (S.K.)
- Centre for Research Excellence, Digestive Health, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Simon Keely
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (G.B.); (J.P.); (S.K.)
- Centre for Research Excellence, Digestive Health, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Nicholas J. Talley
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (G.B.); (J.P.); (S.K.)
- Centre for Research Excellence, Digestive Health, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Department of Gastroenterology, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
8
|
Liu P, Wang Y, Yang G, Zhang Q, Meng L, Xin Y, Jiang X. The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacol Res 2021; 165:105420. [PMID: 33434620 DOI: 10.1016/j.phrs.2021.105420] [Citation(s) in RCA: 388] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/25/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Short-chain fatty acids (SCFAs), mainly including acetate, propionate, and butyrate, are metabolites produced during the bacterial fermentation of dietary fiber in the intestinal tract. They are believed to be essential factors affecting host health. Most in vitro and ex vivo studies have shown that SCFAs affect the regulation of inflammation, carcinogenesis, intestinal barrier function, and oxidative stress, but convincing evidence in humans is still lacking. Two major SCFA signaling mechanisms have been identified: promotion of histone acetylation and activation of G-protein-coupled receptors. In this review, we introduce the production and metabolic characteristics of SCFAs, summarize the potential effects of SCFAs on the four aspects mentioned above and the possible mechanisms. SCFAs have been reported to exert a wide spectrum of positive effects and have a high potential for therapeutic use in human-related diseases.
Collapse
Affiliation(s)
- Pinyi Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China.
| | - Yanbing Wang
- Department of Orthopedic, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Ge Yang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Qihe Zhang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA.
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
9
|
Salminen S, Collado MC, Endo A, Hill C, Lebeer S, Quigley EMM, Sanders ME, Shamir R, Swann JR, Szajewska H, Vinderola G. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat Rev Gastroenterol Hepatol 2021; 18:649-667. [PMID: 33948025 PMCID: PMC8387231 DOI: 10.1038/s41575-021-00440-6] [Citation(s) in RCA: 934] [Impact Index Per Article: 233.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 02/03/2023]
Abstract
In 2019, the International Scientific Association for Probiotics and Prebiotics (ISAPP) convened a panel of experts specializing in nutrition, microbial physiology, gastroenterology, paediatrics, food science and microbiology to review the definition and scope of postbiotics. The term 'postbiotics' is increasingly found in the scientific literature and on commercial products, yet is inconsistently used and lacks a clear definition. The purpose of this panel was to consider the scientific, commercial and regulatory parameters encompassing this emerging term, propose a useful definition and thereby establish a foundation for future developments. The panel defined a postbiotic as a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Effective postbiotics must contain inactivated microbial cells or cell components, with or without metabolites, that contribute to observed health benefits. The panel also discussed existing evidence of health-promoting effects of postbiotics, potential mechanisms of action, levels of evidence required to meet the stated definition, safety and implications for stakeholders. The panel determined that a definition of postbiotics is useful so that scientists, clinical triallists, industry, regulators and consumers have common ground for future activity in this area. A generally accepted definition will hopefully lead to regulatory clarity and promote innovation and the development of new postbiotic products.
Collapse
Affiliation(s)
- Seppo Salminen
- grid.1374.10000 0001 2097 1371Functional Foods Forum, Faculty of Medicine, University of Turku, Turku, Finland
| | - Maria Carmen Collado
- grid.419051.80000 0001 1945 7738Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Akihito Endo
- grid.410772.70000 0001 0807 3368Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Hokkaido, Japan
| | - Colin Hill
- grid.7872.a0000000123318773School of Microbiology, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Sarah Lebeer
- grid.5284.b0000 0001 0790 3681Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Eamonn M. M. Quigley
- Division of Gastroenterology and Hepatology, Lynda K and David M Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, TX USA
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, CO USA
| | - Raanan Shamir
- grid.414231.10000 0004 0575 3167Institute of Pediatric Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center, Petach Tikva, Israel ,grid.12136.370000 0004 1937 0546Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan R. Swann
- grid.5491.90000 0004 1936 9297School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK ,grid.7445.20000 0001 2113 8111Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Hania Szajewska
- grid.13339.3b0000000113287408Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Gabriel Vinderola
- grid.10798.370000 0001 2172 9456Instituto de Lactología Industrial (CONICET-UNL), Faculty of Chemical Engineering, National University of Litoral, Santa Fe, Argentina
| |
Collapse
|
10
|
Suárez-Jaramillo A, Baldeón ME, Prado B, Fornasini M, Cohen H, Flores N, Salvador I, Cargua O, Realpe J, Cárdenas PA. Duodenal microbiome in patients with or without Helicobacter pylori infection. Helicobacter 2020; 25:e12753. [PMID: 32896972 DOI: 10.1111/hel.12753] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/06/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Intestinal microbiota are recognized as an organ with important physiological functions whose alterations have been associated with common diseases including inflammatory intestinal conditions, malnutrition, type-2 diabetes, and cardiovascular diseases. The composition and function of the microbiota in the distal part of the intestine has been mainly described, while there is limited information on the small intestine microbiota. The objective of the present study was to describe the duodenal microbiome in individuals with dyspepsia in the presence or absence of Helicobacter pylori gastric infection. MATERIALS AND METHODS Thirty-eight biopsies from the proximal duodenum of uninfected and 37 from H pylori-infected individuals were analyzed. Microbiota composition was assessed by PCR amplification and sequencing of 16S rRNA and ITS genes; sequences were analyzed with QIIME2. RESULTS AND CONCLUSIONS At the phyla level, Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, and Fusobacteria were predominant in the mucosal associated duodenal microbiota (MAM); at the genera level, we observed the predominance of Ralstonia, Streptococcus, Pseudomonas, Haemophilus, Herbaspirillum, Neisseria, and Veillonella. Microbiota α-diversity was higher in H pylori-infected individuals than in non-infected ones. In terms of β-diversity metrics, there was a statistically significant difference between groups. Also, relative abundance of Haemophilus, Neisseria, Prevotella pallens, Prevotella 7, and Streptococcus was greater in H pylori-infected patients. In infected patients, several types of H pylori were present in duodenal MAM. Finally, the majority of duodenal samples had fungi sequences; the most common taxa observed were Recurvomyces followed by Ascomycota and Basidiomycota.
Collapse
Affiliation(s)
| | - Manuel E Baldeón
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Biomédica, Universidad Tecnológica Equinoccial, Quito, Ecuador
| | - Belén Prado
- Instituto de Microbiología, COCIBA, Universidad San Francisco de Quito, Quito, Ecuador
| | - Marco Fornasini
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Biomédica, Universidad Tecnológica Equinoccial, Quito, Ecuador
| | - Henry Cohen
- Facultad de Medicina, Universidad de la República Uruguay, Montevideo, Uruguay
| | - Nancy Flores
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Biomédica, Universidad Tecnológica Equinoccial, Quito, Ecuador
| | - Iván Salvador
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Biomédica, Universidad Tecnológica Equinoccial, Quito, Ecuador
| | - Oswaldo Cargua
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Biomédica, Universidad Tecnológica Equinoccial, Quito, Ecuador
| | - José Realpe
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Biomédica, Universidad Tecnológica Equinoccial, Quito, Ecuador
| | - Paul A Cárdenas
- Instituto de Microbiología, COCIBA, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
11
|
Severe Intestinal Dysbiosis in Rat Models of Short Bowel Syndrome with Ileocecal Resection. Dig Dis Sci 2020; 65:431-441. [PMID: 31441001 DOI: 10.1007/s10620-019-05802-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Short bowel syndrome (SBS) resulting from extensive intestinal resection is thought to significantly affect gut microbiota. Data are limited on the signatures of the intestinal microbiome in SBS with different anatomical types. AIMS The aim of our investigation was to characterize the composition and function of gut microbiota in SBS with or without ileocecal resection (ICR). METHODS Six-week-old male Sprague-Dawley rats underwent 75% small bowel resection (SBR) with the ileocecal junction intact (SBR group, jejunoileal anastomosis, n = 10) or removed (ICR group, jejunocolic anastomosis, n = 10), or sham surgery (sham group, n = 10). Colonic contents of the rats were collected 28 days after operation, and 16S rRNA gene sequencing was performed on the MiSeq Illumina platform to analyze bacterial composition. RESULTS Overall structures of the gut microbiome differed significantly among the three groups. The bacterial α-diversity of the ICR group was remarkably lower than that of the sham group. ICR rats were enriched with Lactobacillus and opportunistic pathogens from Proteobacteria but depleted of commensal genera belonging to the Lachnospiraceae, Ruminococcaceae and Erysipelotrichaceae families. Genera from the Bacteroidales S24-7 group, Porphyromonadaceae, Prevotellaceae, Rikenellaceae and Christensenellaceae were prevalent in SBR rats. Functional pathways of branched-chain and aromatic amino acid biosynthesis, lipopolysaccharide biosynthesis and infectious diseases were abundant in the ICR group, while SBR rats featured pathways of C5 branched dibasic acid metabolism, biotin metabolism and one carbon pool folate. CONCLUSIONS ICR causes dramatically more severe intestinal dysbiosis than SBR only in SBS rat models, resulting in altered functional profiles of the gut microbiome.
Collapse
|
12
|
Chen Y, Zhang L, Hong G, Huang C, Qian W, Bai T, Song J, Song Y, Hou X. Probiotic mixtures with aerobic constituent promoted the recovery of multi-barriers in DSS-induced chronic colitis. Life Sci 2020; 240:117089. [PMID: 31759038 DOI: 10.1016/j.lfs.2019.117089] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/12/2019] [Accepted: 11/16/2019] [Indexed: 12/13/2022]
Abstract
AIMS Gut microbiota has been closely linked to the mucosal immune and been regarded as a reliable target for intestinal inflammation. This study aimed to explore the therapeutic roles of probiotic mixtures of Bifidobacterium infantis, Lactobacillus acidophilus, Enterococcus faecalis with (quadruple probiotics, P-qua) or without (triple probiotics, P-tri) aerobic Bacillus cereus in colitis, focusing on the multiple barrier functions. MATERIALS AND METHODS Chronic colitis was induced by dextran sulfate sodium (DSS) in C57BL/6 mice. The probiotic mixtures P-qua or P-tri was gavage administrated respectively, while fecal microbiota transplantation (FMT) as a positive control. The intestinal inflammation and functions of multiple barriers were assessed, including the mucus barrier, epithelial barrier and endothelial barrier known as gut-vascular barrier (GVB). Altered composition and diversity in gut microbiota were observed via sequencing analysis. KEY FINDINGS Both P-qua and P-tri relieved the intestinal inflammation and improved the functions of multiple barriers with increased integrity of mucous layer, enhanced transepithelial electrical resistance, declined epithelial and endothelial permeability to macromolecules in DSS-colitis. Aerobe-contained P-qua revealed a more active role in barrier recovering relative to P-tri, while FMT as a positive control seemed to get better results than pure probiotics. Indeed, P-qua was effective in rebuilding the structure and diversity of gut flora in DSS-colitis, especially increased abundance of Bifidobacterium, Akkermansia, Lactobacillus and Bacteroides. SIGNIFICANCE Aerobe-contained P-qua was a powerful adjuvant therapy for chronic colitis, via restoring the intestinal microflora and recovering the multi-barriers in the inflamed gut.
Collapse
Affiliation(s)
- Yuhua Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Gaichao Hong
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Huang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Qian
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhu Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
13
|
Peterson SN, Bradley LM, Ronai ZA. The gut microbiome: an unexpected player in cancer immunity. Curr Opin Neurobiol 2019; 62:48-52. [PMID: 31816571 DOI: 10.1016/j.conb.2019.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022]
Abstract
Numerous independent studies link gut microbiota composition and disease and imply a causal role of select commensal microbes in disease etiology. In the gut, commensal microbiota or pathobionts secrete metabolites that underlie pathological conditions, often impacting proximal tissues and gaining access to the bloodstream. Here we focus on extrinsic and intrinsic factors affecting composition of gut microbiota and their impact on the immune system, as key drivers of anti-tumor immunity. In discussing exciting advances relevant to microbiome-tumor interaction, we note existing knowledge gaps that need to be filled to advance basic and clinical research initiatives.
Collapse
Affiliation(s)
- Scott N Peterson
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines, La Jolla, CA, 92037, United States
| | - Linda M Bradley
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines, La Jolla, CA, 92037, United States
| | - Ze'ev A Ronai
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines, La Jolla, CA, 92037, United States.
| |
Collapse
|