1
|
Wang Z, Wang S, Wang H, Hu B, Qi Z, Zhang Y, Song P, Cai Q, Yang H, Wang J. Uncovering the selectivity mechanism of phosphodiesterase 7A/8A inhibitors through computational studies. Phys Chem Chem Phys 2024; 26:11770-11781. [PMID: 38566586 DOI: 10.1039/d3cp03913g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The expression of phosphodiesterase 7A (PDE7A) and phosphodiesterase 8A (PDE8) genes is integral to human signaling pathways, and the inhibition of PDE7A has been associated with the onset of various diseases, including effects on the immune system and nervous system. The development of PDE7 selective inhibitors can promote research on immune and nervous system diseases, such as multiple sclerosis, chronic inflammation, and autoimmune responses. PDE8A is expressed alongside PDE8B, and its inhibitory mechanism is still unclear. Studying the mechanisms of selective inhibitors against different PDE subtypes is crucial to prevent potential side effects, such as nausea and cardiac toxicity, and the sequence similarity of the two protein subtypes was 55.9%. Therefore, it is necessary to investigate the differences of both subtypes' ligand binding sites. Selective inhibitors of two proteins were chosen to summarize the reason for their selectivity through molecular docking, molecular dynamics simulation, alanine scanning mutagenesis, and MM-GBSA calculation. We found that Phe384PDE7A, Leu401PDE7A, Gln413PDE7A, Tyr419PDE7A, and Phe416PDE7A in the active site positively contribute to the selectivity towards PDE7A. Additionally, Asn729PDE8A, Phe767PDE8A, Gln778PDE8A, and Phe781PDE8A positively contribute to the selectivity towards PDE8A.
Collapse
Affiliation(s)
- Zhijian Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Shizun Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Hanxun Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Baichun Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zhuo Qi
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yaming Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Pengfei Song
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Qingkui Cai
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Huali Yang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jian Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
2
|
Gödecke A, Schrader J, Reinartz M. Nitric oxide-mediated protein modification in cardiovascular physiology and pathology. Proteomics Clin Appl 2012; 2:811-22. [PMID: 21136881 DOI: 10.1002/prca.200780079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nitric oxide (NO) is a key regulator of cardiovascular functions including the control of vascular tone, anti-inflammatory properties of the endothelium, cardiac contractility, and thrombocyte activation and aggregation. Numerous experimental data support the view that NO not only acts via cyclic guanosine monophosphate (cGMP)-dependent mechanisms but also modulates protein function by nitrosation, nitrosylation, glutathiolation, and nitration, respectively. To understand how NO regulates all of these diverse biological processes on the molecular level a comprehensive assessment of NO-mediated cGMP-dependent and independent targets is required. Novel proteomic approaches allow the simultaneous identification of large quantities of proteins modified in an NO-dependent manner and thereby will considerably deepen our understanding of the role NO plays in cardiovascular physiology and pathophysiology.
Collapse
Affiliation(s)
- Axel Gödecke
- Institut für Herz- und Kreislaufphysiologie, Heinrich-Heine-Universität, Düsseldorf, Germany.
| | | | | |
Collapse
|
3
|
Therapeutic potential of sildenafil in patients with heart failure and reactive pulmonary hypertension. Int J Cardiol 2012; 154:205-6. [DOI: 10.1016/j.ijcard.2011.10.064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 10/18/2011] [Indexed: 11/19/2022]
|
4
|
Mokni W, Keravis T, Etienne-Selloum N, Walter A, Kane MO, Schini-Kerth VB, Lugnier C. Concerted regulation of cGMP and cAMP phosphodiesterases in early cardiac hypertrophy induced by angiotensin II. PLoS One 2010; 5:e14227. [PMID: 21151982 PMCID: PMC2997062 DOI: 10.1371/journal.pone.0014227] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 11/12/2010] [Indexed: 12/13/2022] Open
Abstract
Left ventricular hypertrophy leads to heart failure and represents a high risk leading to premature death. Cyclic nucleotides (cAMP and cGMP) play a major role in heart contractility and cyclic nucleotide phosphodiesterases (PDEs) are involved in different stages of advanced cardiac diseases. We have investigated their contributions in the very initial stages of left ventricular hypertrophy development. Wistar male rats were treated over two weeks by chronic infusion of angiotensin II using osmotic mini-pumps. Left cardiac ventricles were used as total homogenates for analysis. PDE1 to PDE5 specific activities and protein and mRNA expressions were explored. Rats developed arterial hypertension associated with a slight cardiac hypertrophy (+24%). cAMP-PDE4 activity was specifically increased while cGMP-PDE activities were broadly increased (+130% for PDE1; +76% for PDE2; +113% for PDE5) and associated with increased expressions for PDE1A, PDE1C and PDE5A. The cGMP-PDE1 activation by Ca2+/CaM was reduced. BNP expression was increased by 3.5-fold, while NOX2 expression was reduced by 66% and AMP kinase activation was increased by 64%. In early cardiac hypertrophy induced by angiotensin II, all specific PDE activities in left cardiac ventricles were increased, favoring an increase in cGMP hydrolysis by PDE1, PDE2 and PDE5. Increased cAMP hydrolysis was related to PDE4. We observed the establishment of two cardioprotective mechanisms and we suggest that these mechanisms could lead to increase intracellular cGMP: i) increased expression of BNP could increase “particulate” cGMP pool; ii) increased activation of AMPK, subsequent to increase in PDE4 activity and 5′AMP generation, could elevate “soluble” cGMP pool by enhancing NO bioavailability through NOX2 down-regulation. More studies are needed to support these assumptions. Nevertheless, our results suggest a potential link between PDE4 and AMPK/NOX2 and they point out that cGMP-PDEs, especially PDE1 and PDE2, may be interesting therapeutic targets in preventing cardiac hypertrophy.
Collapse
Affiliation(s)
- Walid Mokni
- CNRS UMR 7213, Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Progressive abnormalities of passive stiffness or active relaxation of the myocardium that impair ventricular filling during diastole may be an important contributor to the development of heart failure in patients with preserved ejection fraction. In this review, we discuss the epidemiology and pathophysiology of diastolic dysfunction and heart failure with preserved ejection fraction, highlighting potential therapeutic approaches and exploring the limited available evidence base for improving clinical outcomes in patients with these challenging entities.
Collapse
|
6
|
Damy T, Goode KM, Kallvikbacka-Bennett A, Lewinter C, Hobkirk J, Nikitin NP, Dubois-Randé JL, Hittinger L, Clark AL, Cleland JG. Determinants and prognostic value of pulmonary arterial pressure in patients with chronic heart failure. Eur Heart J 2010; 31:2280-90. [DOI: 10.1093/eurheartj/ehq245] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Hoeper MM, Barberà JA, Channick RN, Hassoun PM, Lang IM, Manes A, Martinez FJ, Naeije R, Olschewski H, Pepke-Zaba J, Redfield MM, Robbins IM, Souza R, Torbicki A, McGoon M. Diagnosis, Assessment, and Treatment of Non-Pulmonary Arterial Hypertension Pulmonary Hypertension. J Am Coll Cardiol 2009; 54:S85-S96. [DOI: 10.1016/j.jacc.2009.04.008] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 04/15/2009] [Indexed: 10/20/2022]
|
8
|
Lourenço P, Araújo JP, Azevedo A, Ferreira A, Bettencourt P. The cyclic guanosine monophosphate/B-type natriuretic peptide ratio and mortality in advanced heart failure. Eur J Heart Fail 2009; 11:185-90. [PMID: 19168517 DOI: 10.1093/eurjhf/hfn037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Attenuation of the effects of natriuretic peptides has been demonstrated in animal models but studies in humans are scarce, particularly concerning renal attenuation. We investigated the attenuation of B-type natriuretic peptide (BNP) in chronic advanced heart failure (HF). METHODS AND RESULTS We included 62 outpatients with HF and severe left ventricular systolic dysfunction. Cases had at least one hospital admission or emergency department visit for acute HF in the previous year and were in NYHA class III/IV despite optimized therapy. The individual age- and sex-matched controls were symptomatically controlled (NYHA I and II). We collected 24 h urine and a blood sample from all patients. Plasma BNP and plasma (pcGMP) and urine cyclic guanosine monophosphate (ucGMP) were measured. Patients were followed for 3 months for hospital admission or all-cause death. ucGMP to plasma BNP (ucGMP/BNP) ratio was attenuated in cases vs. controls [median (IQR): 8354 (4293-16,456) vs. 12,693 (6896-22,851)]. There were no differences in pcGMP to BNP (pcGMP/BNP) ratio or urine cGMP excretion. Patients with worse outcome had lower pcGMP/BNP [260 (86-344) vs. 381 (244-728) in patients without adverse outcome events] and lower ucGMP/BNP [4146 (2207-9363) vs. 10,922 (7495-19,971)]. CONCLUSION Renal NP's second messenger production is attenuated in advanced HF. Patients with worse outcome have lower ucGMP/BNP and pcGMP/BNP ratios.
Collapse
Affiliation(s)
- Patrícia Lourenço
- Serviço de Medicina Interna, Hospital S. João, Faculdade de Medicina da Universidade do Porto, Unidade I&D Cardiovascular do Porto, 4202-451 Porto, Portugal.
| | | | | | | | | |
Collapse
|
9
|
The Effects of Sildenafil Citrate on Ischemic Colonic Anastomotic Healing in Rats: Its Relationship Between Nitric Oxide and Oxidative Stress. World J Surg 2008; 32:2107-13. [DOI: 10.1007/s00268-008-9661-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Abstract
The second messenger cyclic guanosine 3',5'-monophosphate (cGMP) controls many cellular functions ranging from growth to contractility. Generated from guanylyl cyclases in response to natriuretic peptides or nitric oxide, cGMP transduces its effects through a number of cGMP effectors, including cGMP-regulated phosphodiesterases and protein kinases. Drugs that modulate cGMP levels are emerging as promising therapies, particularly for cardiovascular disorders. This report summarizes new data on the molecular mechanisms, (patho)physiological relevance, and therapeutic potential of the cGMP signaling system that were presented at the 3rd cGMP meeting held in June 2007 in Dresden, Germany.
Collapse
Affiliation(s)
- Barbara Kemp-Harper
- Department of Pharmacology and Centre for Vascular Health, Monash University, Clayton, Victoria, Australia.
| | | |
Collapse
|
11
|
Mahmud M, Champion HC. Right ventricular failure complicating heart failure: pathophysiology, significance, and management strategies. Curr Cardiol Rep 2007; 9:200-8. [PMID: 17470333 DOI: 10.1007/bf02938351] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Right heart failure most commonly results from the complication of left heart failure (systolic or nonsystolic dysfunction) or pulmonary hypertension. Over the past decade, greater attention has been paid to the role of right ventricular failure in the morbidity and mortality associated with cardiomyopathy and pulmonary hypertension. The right ventricle is distinct from the left ventricle not only in its spatial localization, but also in its response to increased afterload and signaling mechanisms. This article discusses the role of right ventricular failure in the setting of heart failure as well as the clinical diagnosis and management of right ventricular failure.
Collapse
Affiliation(s)
- Mobusher Mahmud
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 720 Rutland Avenue, Ross 850, Baltimore, MD 21205, USA
| | | |
Collapse
|