1
|
Ma Q, Zhang YH, Guo W, Feng K, Huang T, Cai YD. Machine Learning in Identifying Marker Genes for Congenital Heart Diseases of Different Cardiac Cell Types. Life (Basel) 2024; 14:1032. [PMID: 39202774 PMCID: PMC11355424 DOI: 10.3390/life14081032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Congenital heart disease (CHD) represents a spectrum of inborn heart defects influenced by genetic and environmental factors. This study advances the field by analyzing gene expression profiles in 21,034 cardiac fibroblasts, 73,296 cardiomyocytes, and 35,673 endothelial cells, utilizing single-cell level analysis and machine learning techniques. Six CHD conditions: dilated cardiomyopathy (DCM), donor hearts (used as healthy controls), hypertrophic cardiomyopathy (HCM), heart failure with hypoplastic left heart syndrome (HF_HLHS), Neonatal Hypoplastic Left Heart Syndrome (Neo_HLHS), and Tetralogy of Fallot (TOF), were investigated for each cardiac cell type. Each cell sample was represented by 29,266 gene features. These features were first analyzed by six feature-ranking algorithms, resulting in several feature lists. Then, these lists were fed into incremental feature selection, containing two classification algorithms, to extract essential gene features and classification rules and build efficient classifiers. The identified essential genes can be potential CHD markers in different cardiac cell types. For instance, the LASSO identified key genes specific to various heart cell types in CHD subtypes. FOXO3 was found to be up-regulated in cardiac fibroblasts for both Dilated and hypertrophic cardiomyopathy. In cardiomyocytes, distinct genes such as TMTC1, ART3, ARHGAP24, SHROOM3, and XIST were linked to dilated cardiomyopathy, Neo-Hypoplastic Left Heart Syndrome, hypertrophic cardiomyopathy, HF-Hypoplastic Left Heart Syndrome, and Tetralogy of Fallot, respectively. Endothelial cell analysis further revealed COL25A1, NFIB, and KLF7 as significant genes for dilated cardiomyopathy, hypertrophic cardiomyopathy, and Tetralogy of Fallot. LightGBM, Catboost, MCFS, RF, and XGBoost further delineated key genes for specific CHD subtypes, demonstrating the efficacy of machine learning in identifying CHD-specific genes. Additionally, this study developed quantitative rules for representing the gene expression patterns related to CHDs. This research underscores the potential of machine learning in unraveling the molecular complexities of CHD and establishes a foundation for future mechanism-based studies.
Collapse
Affiliation(s)
- Qinglan Ma
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| | - Yu-Hang Zhang
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200030, China;
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou 510507, China;
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
2
|
Natangelo S, Trapani D, Koukoutzeli C, Boscolo Bielo L, Marvaso G, Jereczek-Fossa BA, Curigliano G. Radiation therapy, tissue radiosensitization, and potential synergism in the era of novel antibody-drug conjugates. Crit Rev Oncol Hematol 2024; 195:104270. [PMID: 38272150 DOI: 10.1016/j.critrevonc.2024.104270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Antibody-drug conjugates (ADCs) represent a therapeutic class of agents designed to selectively deliver cytotoxic payloads to cancer cells. With the increasingly positioning of ADCs in the clinical practice, combinations with other treatment modalities, including radiation therapy (RT), will open new opportunities but also challenges. This review evaluates ADC-RT interactions, examining therapeutic synergies and potential caveats. ADC payloads can be radiosensitizing, enhancing cytotoxicity when used in combination with RT. Antigens targeted by ADCs can have various tissue expressions, resulting in possible off-target toxicities by tissue radiosensitization. Notably, the HER-2-directed ADC trastuzumab emtansine has appeared to increase the risk of radionecrosis when used concomitantly with brain RT, as glial cells can express HER2, too. Other possible organ-specific effects are discussed, such as pulmonary and cardiac toxicities. The lack of robust clinical data on the ADC-RT combination raises concerns regarding specific side effects and the ultimate trade-off of toxicity and safety of some combined approaches. Clinical studies are needed to assess ADC-RT combination safety and efficacy.
Collapse
Affiliation(s)
- Stefano Natangelo
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan, Italy; Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Dario Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Chrysanthi Koukoutzeli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
| | - Luca Boscolo Bielo
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Giulia Marvaso
- Division of Radiation Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan, Italy; Division of Radiation Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan, Italy.
| |
Collapse
|
3
|
Wei S, Ma W, Xie S, Liu S, Xie N, Li W, Zhang B, Liu J. Hyperoside Protects Trastuzumab-Induced Cardiotoxicity via Activating the PI3K/Akt Signaling Pathway. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07522-4. [PMID: 37943365 DOI: 10.1007/s10557-023-07522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Abstract
PURPOSE Trastuzumab is a landmark agent in the treatment of human epidermal growth factor receptor-2(HER2)-positive breast cancer. Nevertheless, trastuzumab also comes with unexpected cardiac side effects. Hyperoside is a natural product that serves beneficial roles in cardiovascular disease. This study aimed to explore the effect and mechanism of hyperoside in trastuzumab-induced cardiotoxicity. METHODS A female C57BL/6 mice cardiotoxicity model was established via intraperitoneally injecting with trastuzumab (10 mg/kg/day, once every other day, cumulative dosage to 40 mg/kg) with or without hyperoside (15 or 30 mg/kg/day) administration. In vitro, the H9c2 cells were exposed to 1 μM trastuzumab with or without hyperoside (100 or 200 μM) administration. Cardiac function was evaluated by echocardiographic, myocardial enzymes levels, and pathological section examinations. TUNEL staining and Annexin V-FITC/ propidium iodide flow cytometry were used to analyze the cardiomyocyte apoptosis. RESULTS Compared to the control group, the LVEF, LVFS was decreased and the concentrations of cTnT, CK, CK-MB and LDH in mice were significantly increased after treatment with trastuzumab. Collagen deposition and cardiomyocyte hypertrophy were observed in the myocardium of the trastuzumab group. However, these changes were all reversed by different doses of hyperoside. In addition, hyperoside attenuated trastuzumab-induced myocardium apoptosis and H9c2 cells apoptosis through inhibiting the expressions of cleaved caspase-3 and Bax. Trastuzumab abolished the PI3K/Akt signaling pathway in mice and H9c2 cells, while co-treatment of hyperoside effectively increased the ratio of p-Akt/Akt. CONCLUSION Hyperoside inhibited trastuzumab-induced cardiotoxicity through activating the PI3K/Akt signaling pathway. Hyperoside may be a promising therapeutic approach to trastuzumab-induced cardiotoxicity.
Collapse
Affiliation(s)
- Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Wanjun Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Suifen Xie
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Sa Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Ning Xie
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha, 410013, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Jian Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
4
|
Peddi PF, Fasching PA, Liu D, Quinaux E, Robert NJ, Valero V, Crown J, Falkson C, Brufsky A, Cunningham JM, Weinshilboum RM, Pienkowski T, Eiermann W, Martín M, Bee V, Wang X, Wang L, Yang E, Slamon DJ, Hurvitz SA. Genetic polymorphisms and correlation with treatment induced cardiotoxicity and prognosis in breast cancer patients. Clin Cancer Res 2022; 28:1854-1862. [PMID: 35110416 DOI: 10.1158/1078-0432.ccr-21-1762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/28/2021] [Accepted: 01/31/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiac toxicity is a serious complication of HER2-directed therapies and anthracyclines. HER2 codon 655 and SLC28A3 gene polymorphisms have been reported to be associated with cardiac toxicity from anti-HER2 and anthracycline therapy, respectively. Association of the polymorphism at HER2 codon 655 with prognosis has also been reported. METHODS Whole blood samples from patients treated on a randomized adjuvant breast cancer trial (BCIRG-006) that compared anthracycline-based chemotherapy to trastuzumab plus either anthracycline or non-anthracycline chemotherapy were tested for genetic polymorphisms in HER2 codon 655 and SLC28A3 Genotypes were correlated with cardiac function and disease-free survival (DFS) outcomes. RESULTS Of 3,222 patients enrolled in BCIRG-006, 662 patient samples were successfully genotyped for the rs1136201 allele in HER2 (codon 655): 424 (64%) were AA, 30 (4.5%) were GG, and 208 (31%) were AG genotype. Additionally, 665 patient samples were successfully genotyped for the rs7853758 allele in the SLC28A3 gene: 19 (3%) were AA, 475 (71%) were GG, and 171 (26%) were AG genotype. Follow up time was 10 years. No correlation between DFS, cardiac event rate or mean left ventricular ejection fraction (LVEF) and rs1136201 genotype was seen in the trastuzumab treated or non-trastuzumab treated patients. Moreover, mean LVEF and cardiac event rates were similar in all rs7853758 genotype groups treated with anthracycline-based therapy. CONCLUSIONS In the largest study to date to evaluate whether two polymorphisms are associated with DFS and/or cardiac toxicity in HER2 positive breast cancer treated with trastuzumab and/or anthracyclines, we observed no correlation.
Collapse
Affiliation(s)
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg
| | - Duan Liu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic
| | - Emmanuel Quinaux
- Biostatistics, International Drug Development Institute (Belgium)
| | | | - Vicente Valero
- Department of Breast Medical Oncology--424, The University of Texas MD Anderson Cancer Center
| | - John Crown
- Medical Oncology, St. Vincent's University Hospital
| | - Carla Falkson
- Wilmot Cancer Institute, University of Rochester Medical Center
| | - Adam Brufsky
- Hematology and Oncology, University of Pittsburgh
| | | | - Richard M Weinshilboum
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic
| | | | | | - Miguel Martín
- Medical Oncology, Department of Medical Oncology, Hospital General Universitario Gregorio Marañón Instituto de Investigacion Sanitaria Gregorio Marañon, CIBERONC, Universidad Complutense, Madrid
| | - Valerie Bee
- Project Management, Translational Oncology Research International (TRIO/CIRG)
| | - Xiaoyan Wang
- Department of General Internal Medicine and Healthy Services Research, University of California, Los Angeles
| | - Liewei Wang
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic
| | | | - Dennis J Slamon
- Division of Hematology-Oncology, Geffen School of Medicine at UCLA
| | - Sara A Hurvitz
- David Geffen School of Medicine Division of Hematology-Oncology, University of California, Los Angeles
| |
Collapse
|
5
|
Lin M, Xiong W, Wang S, Li Y, Hou C, Li C, Li G. The Research Progress of Trastuzumab-Induced Cardiotoxicity in HER-2-Positive Breast Cancer Treatment. Front Cardiovasc Med 2022; 8:821663. [PMID: 35097033 PMCID: PMC8789882 DOI: 10.3389/fcvm.2021.821663] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
In recent years, the incidence of breast cancer has been increasing on an annual basis. Human epidermal growth factor receptor-2 (HER-2) is overexpressed in 15-20% human breast cancers, which is associated with poor prognosis and a high recurrence rate. Trastuzumab is the first humanized monoclonal antibody against HER-2. The most significant adverse effect of trastuzumab is cardiotoxicity, which has become an important factor in limiting the safe use of the drug. Unfortunately, the mechanism causing this cardiotoxicity is still not completely understood, and the use of preventive interventions remains controversial. This article focuses on trastuzumab-induced cardiotoxicity, reviewing the clinical application, potential cardiotoxicity, mechanism and discussing the potential interventions through summarizing related researches over the past tens of years.
Collapse
Affiliation(s)
- Mengmeng Lin
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weiping Xiong
- Department of Cardiology, Shanghai Putuo District Liqun Hospital, Shanghai, China
| | - Shiyuan Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingying Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunying Hou
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunyu Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guohui Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Wu Q, Bai B, Tian C, Li D, Yu H, Song B, Li B, Chu X. The Molecular Mechanisms of Cardiotoxicity Induced by HER2, VEGF, and Tyrosine Kinase Inhibitors: an Updated Review. Cardiovasc Drugs Ther 2021; 36:511-524. [PMID: 33847848 DOI: 10.1007/s10557-021-07181-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
AIM In recent decades, there has been a revolutionary decrease in cancer-related mortality and an increase in survival due to the introduction of novel targeted drugs. Nevertheless, drugs targeting human epidermal growth factor receptor 2 (HER-2), angiogenesis, and other tyrosine kinases also come with unexpected cardiac side effects, including heart failure, hypertension, arterial thrombosis, and arrhythmias, and have mechanisms that are unlike those of classic chemotherapeutic agents. In addition, it is challenging to address some problems, as the existing guidelines need to be more specific, and further large-scale clinical trials and experimental studies are required to confirm the benefit of administering cardioprotective agents to patients treated with targeted therapies. Therefore, an improved understanding of cardiotoxicity becomes increasingly important to minimize the pernicious effects and maximize the beneficial effects of targeted agents. METHODS "Cardiotoxicity", "targeted drugs", "HER2", "trastuzumab", "angiogenesis inhibitor", "VEGF inhibitor" and "tyrosine kinase inhibitors" are used as keywords for article searches. RESULTS In this article, we report several targeted therapies that induce cardiotoxicity and update knowledge of the clinical evidence, molecular mechanisms, and management measures.
Collapse
Affiliation(s)
- Qinchao Wu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266100, Shandong, China
| | - Baochen Bai
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266100, Shandong, China
| | - Chao Tian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266100, Shandong, China
| | - Daisong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266100, Shandong, China
| | - Haichu Yu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266100, Shandong, China
| | - Bingxue Song
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266100, Shandong, China
| | - Bing Li
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, Shandong, China.
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, No. 308 Ningxia Road, Qingdao, 266000, Shandong, China.
| | - Xianming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266100, Shandong, China.
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
7
|
Calvillo-Argüelles O, Abdel-Qadir H, Michalowska M, Billia F, Suntheralingam S, Amir E, Thavendiranathan P. Cardioprotective Effect of Statins in Patients With HER2-Positive Breast Cancer Receiving Trastuzumab Therapy. Can J Cardiol 2018; 35:153-159. [PMID: 30760421 DOI: 10.1016/j.cjca.2018.11.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Statins can reduce the risk of anthracycline-induced cardiotoxicity. Whether such cardioprotective effects can be seen in trastuzumab-treated patients has not been explored. METHODS Consecutive women with HER2+ breast cancer who received trastuzumab with or without anthracyclines were identified retrospectively. Patients receiving statins before and during cancer treatment were matched with 2 patients of the same age (± 2 years) and anthracycline exposure status but without statin treatment. The primary outcome was final left ventricular ejection fraction (LVEF). Analysis of covariance (ANCOVA) was used to assess the relationship between statin exposure and the final LVEF. A logistic regression model was constructed to assess the relationship between statin exposure and cardiotoxicity (secondary outcome). RESULTS Included were 129 patients (62 ± 9 years). Forty-three received statins during cancer treatment. The median trastuzumab exposure time was 11.8 (interquartile range [IQR] 11 to 12) months. Seventy-two (56%) patients received anthracyclines. Compared with controls, patients treated with statins were more likely to have diabetes (37.2% vs 4.7%, P < 0.001), hypertension (58.1% vs 22.1%, P < 0.001), and coronary artery disease (11.6% vs 2.3%, P = 0.04). Within a median cardiac follow-up duration of 11 (IQR 9 to 18) months, the adjusted final LVEF was lower in the control group (61.2% vs 64.6%, P = 0.034). A significant change in LVEF was observed in the control group (median -6%, IQR -10% to -1% P < 0.001) but not in the statin group (median 0%, IQR -5% to +3%, P = 0.27). Upon adjusted analysis, statin treatment was independently associated with a lower risk of cardiotoxicity (odds ratio [OR] 0.32, 95% confidence interval [CI], 0.10-0.99, P = 0.049). CONCLUSIONS In women with HER2+ breast cancer receiving trastuzumab-based therapy with or without anthracyclines, concomitant use of statins was associated with a lower risk of cardiotoxicity.
Collapse
Affiliation(s)
- Oscar Calvillo-Argüelles
- Division of Cardiology, Peter Munk Cardiac Center, Ted Rogers Program in Cardiotoxicity Prevention, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Instituto Nacional de Cancerología (INCan), Unidad de Cardio-Oncología, Mexico City, Mexico
| | - Husam Abdel-Qadir
- Division of Cardiology, Peter Munk Cardiac Center, Ted Rogers Program in Cardiotoxicity Prevention, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, Women's College Hospital, Toronto, Ontario, Canada
| | - Maria Michalowska
- Division of Cardiology, Peter Munk Cardiac Center, Ted Rogers Program in Cardiotoxicity Prevention, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Filio Billia
- Division of Cardiology, Peter Munk Cardiac Center, Ted Rogers Program in Cardiotoxicity Prevention, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Sivisan Suntheralingam
- Division of Cardiology, Peter Munk Cardiac Center, Ted Rogers Program in Cardiotoxicity Prevention, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Eitan Amir
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Paaladinesh Thavendiranathan
- Division of Cardiology, Peter Munk Cardiac Center, Ted Rogers Program in Cardiotoxicity Prevention, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Babiker HM, McBride A, Newton M, Boehmer LM, Drucker AG, Gowan M, Cassagnol M, Camenisch TD, Anwer F, Hollands JM. Cardiotoxic effects of chemotherapy: A review of both cytotoxic and molecular targeted oncology therapies and their effect on the cardiovascular system. Crit Rev Oncol Hematol 2018; 126:186-200. [DOI: 10.1016/j.critrevonc.2018.03.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 02/01/2018] [Accepted: 03/21/2018] [Indexed: 11/16/2022] Open
|
9
|
Cardiac Nonmyocyte Cell Functions and Crosstalks in Response to Cardiotoxic Drugs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1089359. [PMID: 29201269 PMCID: PMC5671742 DOI: 10.1155/2017/1089359] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/24/2017] [Indexed: 01/06/2023]
Abstract
The discovery of the molecular mechanisms involved in the cardiac responses to anticancer drugs represents the current goal of cardio-oncology research. The oxidative stress has a pivotal role in cardiotoxic responses, affecting the function of all types of cardiac cells, and their functional crosstalks. Generally, cardiomyocytes are the main target of research studies on cardiotoxicity, but recently the contribution of the other nonmyocyte cardiac cells is becoming of growing interest. This review deals with the role of oxidative stress, induced by anticancer drugs, in cardiac nonmyocyte cells (fibroblasts, vascular cells, and immune cells). The alterations of functional interplays among these cardiac cells are discussed, as well. These interesting recent findings increase the knowledge about cardiotoxicity and suggest new molecular targets for both diagnosis and therapy.
Collapse
|
10
|
Morano M, Angotti C, Tullio F, Gambarotta G, Penna C, Pagliaro P, Geuna S. Myocardial ischemia/reperfusion upregulates the transcription of the Neuregulin1 receptor ErbB3, but only postconditioning preserves protein translation: Role in oxidative stress. Int J Cardiol 2017; 233:73-79. [PMID: 28162790 DOI: 10.1016/j.ijcard.2017.01.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 12/28/2016] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND Neuregulin1 (Nrg1) and its receptors ErbB are crucial for heart development and for adult heart structural maintenance and function and Nrg1 has been proposed for heart failure treatment. Infarct size is the major determinant of heart failure and the mechanism of action and the role of each ErbB receptor remain obscure, especially in the post-ischemic myocardium. We hypothesized that Nrg1 and ErbB are affected at transcriptional level early after ischemia/reperfusion (I/R) injury, and that the protective postconditioning procedure (PostC, brief cycles of ischemia/reperfusion carried out after a sustained ischemia) can influence this pathway. METHODS AND RESULTS The Langendorff's heart was used as an ex-vivo model to mimic an I/R injury in the whole rat heart; after 30min of ischemia and 2h of reperfusion, with or without PostC, Nrg1 and ErbB expression were analysed by quantitative real-time PCR and Western blot. While no changes occur for ErbB2, ErbB4 and Nrg1, an increase of ErbB3 expression occurs after I/R injury, with and without PostC. However, I/R reduces ErbB3 protein, whereas PostC preserves it. An in vitro analysis with H9c2 cells exposed to redox-stress indicated that the transient over-expression of ErbB3 alone is able to increase cell survival (MTT assay), limiting mitochondrial dysfunction (JC-1 probe) and apoptotic signals (Bax/Bcl-2 ratio). CONCLUSIONS This study suggests ErbB3 as a protective factor against death pathways activated by redox stress and supports an involvement of this receptor in the pro-survival responses.
Collapse
Affiliation(s)
- Michela Morano
- Department of Clinical and Biological Sciences, University of Turin, Torino, Italy
| | - Carmelina Angotti
- Department of Clinical and Biological Sciences, University of Turin, Torino, Italy
| | - Francesca Tullio
- Department of Clinical and Biological Sciences, University of Turin, Torino, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Turin, Torino, Italy
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Torino, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Torino, Italy.
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Torino, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Torino, Italy
| |
Collapse
|
11
|
Giordano G, Spagnuolo A, Olivieri N, Corbo C, Campagna A, Spagnoletti I, Pennacchio RM, Campidoglio S, Pancione M, Palladino L, Villari B, Febbraro A. Cancer drug related cardiotoxicity during breast cancer treatment. Expert Opin Drug Saf 2016; 15:1063-74. [PMID: 27120499 DOI: 10.1080/14740338.2016.1182493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Breast cancer (BC) is the most common cancer in women. Although therapeutic armamentarium like chemotherapy, endocrine and target agents have increased survival, cardiovascular side effects have been observed. A comprehensive risk assessment, early detection and management of cardiac adverse events is therefore needed. AREAS COVERED In this review we focus on cardiotoxicity data deriving from Phase III randomized trials, systematic reviews and meta-analysis in BC patients. We provide insight into advances that have been made in the molecular mechanisms, clinical presentation and management of such adverse event. EXPERT OPINION Despite the large number of data from Phase III trials about cardiac events incidence, there are poor evidences for detection, monitoring and management of cardiotoxicity during BC treatment. Future cardiotoxicity-oriented clinical cancer research can help to predict the risk of cardiac adverse events and improve patients' outcome. Multidisciplinary approach as well as integration of blood biomarkers with imaging will be desirable.
Collapse
Affiliation(s)
- Guido Giordano
- a Medical Oncology Unit , Ospedale Sacro Cuore di Gesù, Fatebenefratelli , Benevento , Italy
| | - Alessia Spagnuolo
- a Medical Oncology Unit , Ospedale Sacro Cuore di Gesù, Fatebenefratelli , Benevento , Italy
| | - Nunzio Olivieri
- b Department of Biology , University of Naples, Federico II , Napoli , Italy
| | - Claudia Corbo
- a Medical Oncology Unit , Ospedale Sacro Cuore di Gesù, Fatebenefratelli , Benevento , Italy
| | - Angelo Campagna
- a Medical Oncology Unit , Ospedale Sacro Cuore di Gesù, Fatebenefratelli , Benevento , Italy
| | - Ilaria Spagnoletti
- a Medical Oncology Unit , Ospedale Sacro Cuore di Gesù, Fatebenefratelli , Benevento , Italy
| | | | - Serena Campidoglio
- a Medical Oncology Unit , Ospedale Sacro Cuore di Gesù, Fatebenefratelli , Benevento , Italy
| | - Massimo Pancione
- c Duepartment of Science and Technology , University of Sannio , Benevento , Italy
| | - Luciano Palladino
- d Department of Surgery , Ospedale Sacro Cuore di Gesù, Fatebenefratelli , Benevento , Italy
| | - Bruno Villari
- e Department of Cardiology , Ospedale Sacro Cuore di Gesù, Fatebenefratelli , Benevento , Italy
| | - Antonio Febbraro
- a Medical Oncology Unit , Ospedale Sacro Cuore di Gesù, Fatebenefratelli , Benevento , Italy
| |
Collapse
|
12
|
Dias A, Claudino W, Sinha R, Perez C, Jain D. Human epidermal growth factor antagonists and cardiotoxicity—A short review of the problem and preventative measures. Crit Rev Oncol Hematol 2016; 104:42-51. [DOI: 10.1016/j.critrevonc.2016.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 03/09/2016] [Accepted: 04/27/2016] [Indexed: 01/21/2023] Open
|
13
|
Riccio G, Coppola C, Piscopo G, Capasso I, Maurea C, Esposito E, De Lorenzo C, Maurea N. Trastuzumab and target-therapy side effects: Is still valid to differentiate anthracycline Type I from Type II cardiomyopathies? Hum Vaccin Immunother 2016; 12:1124-31. [PMID: 26836985 PMCID: PMC4963071 DOI: 10.1080/21645515.2015.1125056] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The improvement in cancer therapy and the increasing number of long term survivors unearth the issue of cardiovascular side effects of anticancer treatments. As a paradox in cancer survivors, delayed cardiotoxicity has emerged as a significant problem. Two categories of cardiotoxic side effects of antineoplastic drugs have been previously proposed: Type I cardiotoxicity, defined as permanent cardiotoxicity, is usually caused by anthracyclines; Type II cardiotoxicity, considered as reversible cardiotoxicity, has been mainly related to monoclonal antibodies. The cardiotoxicity of antibodies has been associated to trastuzumab, a humanized anti-ErbB2 monoclonal antibody currently in clinical use for the therapy of breast carcinomas, which induces cardiac dysfunction when used in monotherapy, or in combination with anthracyclines. Furthermore, recent retrospective studies have shown an increased incidence of heart failure and/or cardiomyopathy in patients treated with trastuzumab, that can persist many years after the conclusion of the therapy, thus suggesting that the side toxic effects are not always reversible as it was initially proposed. On the other hand, early detection and prompt therapy of anthracycline associated cardiotoxicity can lead to substantial recovery of cardiac function. On the basis of these observations, we propose to find a new different classification for cardiotoxic side effects of drugs used in cancer therapy.
Collapse
Affiliation(s)
- Gennaro Riccio
- a Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" -IRCCS - Naples , Italy
| | - Carmela Coppola
- a Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" -IRCCS - Naples , Italy
| | - Giovanna Piscopo
- a Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" -IRCCS - Naples , Italy
| | - Immacolata Capasso
- a Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" -IRCCS - Naples , Italy
| | - Carlo Maurea
- a Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" -IRCCS - Naples , Italy
| | - Emanuela Esposito
- a Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" -IRCCS - Naples , Italy
| | - Claudia De Lorenzo
- b CEINGE Biotecnologie Avanzate , Naples , Italy.,c Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università Federico II , Naples , Italy
| | - Nicola Maurea
- a Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" -IRCCS - Naples , Italy
| |
Collapse
|
14
|
Abdel-Rahman O, Alorabi M. Use of angiotensin-converting enzyme inhibitors in the prophylaxis of anthracycline or trastuzumab-related cardiac dysfunction: preclinical and clinical considerations. Expert Rev Anticancer Ther 2015; 15:829-837. [DOI: 10.1586/14737140.2015.1047766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
15
|
Yin HK, Li XY, Jiang ZG, Zhou MD. Progress in neuregulin/ErbB signaling and chronic heart failure. World J Hypertens 2015; 5:63-73. [DOI: 10.5494/wjh.v5.i2.63] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 03/10/2015] [Accepted: 04/20/2015] [Indexed: 02/06/2023] Open
Abstract
Heart failure is one of the leading causes of death today. It is a complex clinical syndrome in which the heart has a reduced contraction ability and decreased viable myocytes. Novel approaches to the clinical management of heart failure have been achieved through an understanding of the molecular pathways necessary for normal heart development. Neuregulin-1 (NRG-1) has emerged as a potential therapeutic target based on the fact that mice null for NRG-1 or receptors mediating its activity, ErbB2 and ErbB4, are embryonic lethal and exhibit severe cardiac defects. Preclinical studies performed with animal models of heart failure demonstrate that treatment with NRG-1 significantly improves heart function and survival. Clinical data further support NRG-1 as a promising drug candidate for the treatment of cardiac dysfunction in patients. Recent studies have revealed the mechanism underlying the therapeutic effects of NRG-1/ErbB signaling in the treatment of heart failure. Through activation of upstream signaling molecules such as phosphoinositide 3-kinase, mitogen-activated protein kinase, and focal adhesion kinase, NRG-1/ErbB pathway activation results in increased cMLCK expression and enhanced intracellular calcium cycling. The former is a regulator of the contractile machinery, and the latter triggers cell contraction and relaxation. In addition, NRG-1/ErbB signaling also influences energy metabolism and induces epigenetic modification in cardiac myocytes in a way that more closely resembles healthy heart. These observations reveal potentially new treatment options for heart failure.
Collapse
|
16
|
Rupert CE, Coulombe KL. The roles of neuregulin-1 in cardiac development, homeostasis, and disease. Biomark Insights 2015; 10:1-9. [PMID: 25922571 PMCID: PMC4395047 DOI: 10.4137/bmi.s20061] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/01/2015] [Accepted: 03/04/2015] [Indexed: 02/07/2023] Open
Abstract
Neuregulin-1 (NRG-1) and its signaling receptors, erythroblastic leukemia viral oncogene homologs (ErbB) 2, 3, and 4, have been implicated in both cardiomyocyte development and disease, as well as in homeostatic cardiac function. NRG-1/ErbB signaling is involved in a multitude of cardiac processes ranging from myocardial and cardiac conduction system development to angiogenic support of cardiomyocytes, to cardioprotective effects upon injury. Numerous studies of NRG-1 employ a variety of platforms, including in vitro assays, animal models, and human clinical trials, with equally varying and, sometimes, contradictory outcomes. NRG-1 has the potential to be used as a therapeutic tool in stem cell therapies, tissue engineering applications, and clinical diagnostics and treatment. This review presents a concise summary of the growing body of literature to highlight the temporally persistent significance of NRG-1/ErbB signaling throughout development, homeostasis, and disease in the heart, specifically in cardiomyocytes.
Collapse
Affiliation(s)
- Cassady E Rupert
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Kareen Lk Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA. ; Department of Molecular Pharmacology, Physiology and Biotechnology, Division of Biology and Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
17
|
Mlih M, Host L, Martin S, Niederhoffer N, Monassier L, Terrand J, Messaddeq N, Radke M, Gotthardt M, Bruban V, Kober F, Bernard M, Canet-Soulas E, Abt-Jijon F, Boucher P, Matz RL. The Src homology and collagen A (ShcA) adaptor protein is required for the spatial organization of the costamere/Z-disk network during heart development. J Biol Chem 2014; 290:2419-30. [PMID: 25488665 DOI: 10.1074/jbc.m114.597377] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Src homology and collagen A (ShcA) is an adaptor protein that binds to tyrosine kinase receptors. Its germ line deletion is embryonic lethal with abnormal cardiovascular system formation, and its role in cardiovascular development is unknown. To investigate its functional role in cardiovascular development in mice, ShcA was deleted in cardiomyocytes and vascular smooth muscle cells by crossing ShcA flox mice with SM22a-Cre transgenic mice. Conditional mutant mice developed signs of severe dilated cardiomyopathy, myocardial infarctions, and premature death. No evidence of a vascular contribution to the phenotype was observed. Histological analysis of the heart revealed aberrant sarcomeric Z-disk and M-band structures, and misalignments of T-tubules with Z-disks. We find that not only the ErbB3/Neuregulin signaling pathway but also the baroreceptor reflex response, which have been functionally associated, are altered in the mutant mice. We further demonstrate that ShcA interacts with Caveolin-1 and the costameric protein plasma membrane Ca(2+)/calmodulin-dependent ATPase (PMCA), and that its deletion leads to abnormal dystrophin signaling. Collectively, these results demonstrate that ShcA interacts with crucial proteins and pathways that link Z-disk and costamere.
Collapse
Affiliation(s)
- Mohamed Mlih
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Lionel Host
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Sophie Martin
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Nathalie Niederhoffer
- the Laboratory of Neurobiology and Cardiovascular Pharmacology Department, EA 7296, Federation of Translational Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Laurent Monassier
- the Laboratory of Neurobiology and Cardiovascular Pharmacology Department, EA 7296, Federation of Translational Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Jérôme Terrand
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Nadia Messaddeq
- the IGBMC, INSERM U964 CNRS UMR 7104, University of Strasbourg, 67401 Illkirch, France
| | - Michael Radke
- the Neuromuscular and Cardiovascular Cell Biology, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany, the DZHK, German Centre for Cardiovascular Research, partner site, 13347 Berlin, Germany
| | - Michael Gotthardt
- the Neuromuscular and Cardiovascular Cell Biology, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany, the DZHK, German Centre for Cardiovascular Research, partner site, 13347 Berlin, Germany
| | - Véronique Bruban
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Frank Kober
- the CRMBM, CNRS, UMR 7339, University of Aix-Marseille, 13385 Marseille, France, and
| | - Monique Bernard
- the CRMBM, CNRS, UMR 7339, University of Aix-Marseille, 13385 Marseille, France, and
| | - Emmanuelle Canet-Soulas
- the CREATIS-LRMN, CNRS, UMR 5220, U630 INSERM, 69621 Villeurbanne, Lyon-1 University, Lyon, France
| | | | - Philippe Boucher
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France,
| | - Rachel L Matz
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France,
| |
Collapse
|
18
|
Xu M, Wu X, Jie B, Zhang X, Zhang J, Xin Y, Guo Y. Neuregulin-1 protects myocardial cells against H2 O2 -induced apoptosis by regulating endoplasmic reticulum stress. Cell Biochem Funct 2014; 32:464-9. [PMID: 24867233 DOI: 10.1002/cbf.3038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/08/2014] [Accepted: 04/28/2014] [Indexed: 01/23/2023]
Abstract
Neuregulin-1 (NRG-1) is a stress-mediated growth factor secreted by cardiovascular endothelial cells and provides the protection to myocardial cells, but the underlying mechanisms are not fully understood. This study aimed to demonstrate that NRG-1 protects myocardial cells exposed to oxidative damage by regulating endoplasmic reticulum (ER) stress. Neonatal rat cardiac myocytes (NRCMs) were isolated and treated with H2 O2 as a cellular model of ER stress. NRCMs were pretreated with different concentrations of NRG-1. We found that NRG-1 increased the viability and reduced the apoptosis of NRCMs treated by H2 O2 . Moreover, NRG-1 reduced lactate dehydrogenase level, increased superoxide dismutase activity and decreased malondialdehyde content in NRCMs treated by H2 O2 . Finally, we demonstrated that NRG-1 alleviated ER stress and decreased CHOP and GRP78 protein levels in NRCMs treated by H2 O2 . Taken together, these data indicate that NRG-1 relieves oxidative and ER stress in NRCMs and suggest that NRG-1 is a promising agent for cardioprotection.
Collapse
Affiliation(s)
- Min Xu
- Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Central neuregulin-1/ErbB signaling modulates cardiac function via sympathetic activity in pressure overload-induced heart failure. J Hypertens 2014; 32:817-25. [DOI: 10.1097/hjh.0000000000000072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Li B, Xiao J, Li Y, Zhang J, Zeng M. Gene transfer of human neuregulin-1 attenuates ventricular remodeling in diabetic cardiomyopathy rats. Exp Ther Med 2013; 6:1105-1112. [PMID: 24223630 PMCID: PMC3820667 DOI: 10.3892/etm.2013.1273] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/05/2013] [Indexed: 01/10/2023] Open
Abstract
Neuregulin-1 (NRG-1) is a cardioactive growth factor released from endothelial cells. However, the effect of NRG-1 on ventricular remodeling in diabetic cardiomyopathy (DCM) remains unclear. The aim of the present study was to investigate the pathophysiological role of NRG-1 in a rat model of DCM. Rat cardiac microvascular endothelial cells (CMECs) were transfected with human NRG-1 (hNRG-1) lentivirus. The hNRG-1 medium was utilized to culture rat cardiomyocytes. The cardiomyocytes were counted with a hemacytometer to determine the proliferation index and Annexin V/propidium iodide double staining was employed to examine the apoptotic rate. A rat model of DCM was induced by an intraperitoneal injection of streptozotocin. The hNRG-1 lentivirus was injected into the myocardium of the DCM model rats. Four weeks after the lentiviral injection, cardiac catheterization was performed to evaluate the cardiac function. Apoptotic cells were determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining. Left ventricular sections were stained with Masson’s trichrome to investigate the myocardial collagen content. The expression levels of related genes and proteins were analyzed. The results indicated that hNRG-1 conditioned medium stimulated the proliferation and counteracted the apoptosis of cardiomyocytes in vitro. In the rats with DCM, gene transfer of hNRG-1 to the myocardium improved heart function, as indicated by invasive hemodynamic measurements. In addition, hNRG-1 reduced the number of apoptotic cells, decreased the expression of bax and increased the expression of bcl-2 in the myocardium of the DCM model rats. Myocardial fibrosis and type I and III pro-collagen mRNA levels in the myocardium were significantly reduced by hNRG-1. hNRG-1 also increased the expression of phospho-Akt and phospho-eNOS in the myocardium. In conclusion, the gene transfer of hNRG-1 ameliorates cardiac dysfunction in diabetes. Although further studies are required, NRG-1 appears to protect cardiomyocytes against apoptosis and to reduce the extent of myocardial interstitial fibrosis.
Collapse
Affiliation(s)
- Bingong Li
- Department of Cardiology, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | | | | | | | | |
Collapse
|
21
|
The HER2 Receptor in Breast Cancer: Pathophysiology, Clinical Use, and New Advances in Therapy. CHEMOTHERAPY RESEARCH AND PRACTICE 2012; 2012:743193. [PMID: 23320171 PMCID: PMC3539433 DOI: 10.1155/2012/743193] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 11/26/2012] [Indexed: 01/03/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2) is overexpressed in around 20-30% of breast cancer tumors. It is associated with a more aggressive disease, higher recurrence rate, and increased mortality. Trastuzumab is a HER2 receptor blocker that has become the standard of care for the treatment of HER2 positive breast cancer. The effectiveness of Trastuzumab has been well validated in research as well as in clinical practice. The addition of Trastuzumab to standard of care chemotherapy in clinical trials has been shown to improve outcomes for early stage as well as metastatic HER2 positive breast cancer. The most clinically significant side effect of Trastuzumab is the risk of cardiac myocyte injury, leading to the development of congestive heart failure. The emergence of patterns of resistance to Trastuzumab has led to the discovery of new monoclonal antibodies and other targeted agents aimed at overcoming Trastuzumab resistance and improving survival in patients diagnosed with HER2 positive breast cancers.
Collapse
|
22
|
Roca-Alonso L, Pellegrino L, Castellano L, Stebbing J. Breast cancer treatment and adverse cardiac events: what are the molecular mechanisms? Cardiology 2012; 122:253-9. [PMID: 22907032 DOI: 10.1159/000339858] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 05/29/2012] [Indexed: 02/02/2023]
Abstract
Cardiotoxicity associated with breast cancer treatment is an important concern in the oncology clinic. Different types of anti-cancer therapies have recorded high rates of cardiac dysfunction in treated patients. Cardiac dysfunction linked to anthracyclines--one of the most common conventional chemotherapies--has extensively been described and several mechanisms have been proposed, although their mode of action is not fully understood even in cancer cells. The mediation of cardiac damage by reactive oxygen species stress is a recent hypothesis that has attracted a lot of interest, since it might explain the tissue-specific toxic effects of anthracyclines in the heart. Regarding molecular targeted tyrosine kinase inhibitors used in patients with human epidermal growth factor receptor type 2+ tumours (e.g., trastuzumab, lapatinib), it is the blockage of survival pathways required for a normal heart development and function that seems to lead to cardiac pathology. Both types of breast cancer treatment appear to trigger cardiotoxicity synergically, being patients under adjuvant therapy closely monitored. Given the complex nature of heart failure and of the pathways altered by anti-cancer drugs, global gene expression regulation is key in the heart disease process. MicroRNAs have been demonstrated to be small molecules with big roles as essential gene expression modulators. The great potential of microRNAs as biomarkers in the cardio-oncology field needs to be further explored before new microRNA-based diagnostic and therapeutic tools can be developed.
Collapse
|
23
|
Watanabe T, Sato K, Itoh F, Iso Y. Pathogenic involvement of heregulin-β1 in anti-atherogenesis. ACTA ACUST UNITED AC 2012; 175:11-4. [DOI: 10.1016/j.regpep.2012.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/12/2011] [Accepted: 01/10/2012] [Indexed: 12/28/2022]
|
24
|
Abstract
Understanding of chronic heart failure (HF) has progressed from a syndrome of disordered hemodynamics caused by alterations in the structure of the heart to one that involves intertwined molecular pathways in disarray. Accordingly, the assessment and treatment of patients with chronic HF has shifted from a focus on hemodynamics to modification of maladaptive molecular processes. Accumulating evidence shows that molecular biomarkers of disease could provide a unique window into the pathophysiology of chronic HF, potentially improving our ability to predict adverse outcomes, provide novel drug targets, and even help gauge therapeutic efficacy. The more 'traditional' biomarkers such as cardiac troponin, natriuretic peptides, and C-reactive protein have been studied in large cohorts of patients with chronic HF and have relatively established clinical applications. In this Review, we summarize the properties, clinical data, and potential applications of some emerging biomarkers that could uniquely indicate the level of biomechanical stretch, inflammation, ventricular remodeling, myocardial injury, and renal dysfunction that occurs in chronic HF. We will also discuss the potential role for these biomarkers within a multimarker-based strategy that could, in the future, lead to better care for these patients.
Collapse
|
25
|
Vanderlaan RD, Hardy WR, Kabir MG, Pasculescu A, Jones N, deTombe PP, Backx PH, Pawson T. The ShcA phosphotyrosine docking protein uses distinct mechanisms to regulate myocyte and global heart function. Circ Res 2010; 108:184-93. [PMID: 21148430 DOI: 10.1161/circresaha.110.233924] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RATIONALE Although tyrosine kinases (TKs) are important for cardiac function, their relevant downstream targets in the adult heart are unknown. The ShcA docking protein binds specific phosphotyrosine (pTyr) sites on activated TKs through its N-terminal pTyr-binding (PTB) and C-terminal SH2 domains and stimulates downstream pathways through motifs such as pTyr sites in its central CH1 region. Therefore, ShcA could be a potential hub for downstream TK signaling in the myocardium. OBJECTIVE To define the role of ShcA, a TK scaffold, in the adult heart using a myocardial-specific knockout of murine ShcA (ShcA CKO) and domain knock-in models. METHODS AND RESULTS ShcA CKO mice developed a dilated cardiomyopathy phenotype involving impaired systolic function with enhanced cardiomyocyte contractility. This uncoupling of global heart and intrinsic myocyte functions was associated with altered collagen and extracellular matrix compliance properties, suggesting disruption of mechanical coupling. In vivo dissection of ShcA signaling properties revealed that selective inactivation of the PTB domain in the myocardium had effects resembling those seen in ShcA CKO mice, whereas disruption of the SH2 domain caused a less severe cardiac phenotype. Downstream signaling through the CH1 pTyr sites was dispensable for baseline cardiac function but necessary to prevent adverse remodeling after hemodynamic overload. CONCLUSIONS These data demonstrate a requirement for TK-ShcA PTB domain signaling to maintain cardiac function. In addition, analysis of the SH2 domain and CH1 pTyr sites reveals that ShcA mediates pTyr signaling in the adult heart through multiple distinct signaling elements that control myocardial functions and response to stresses.
Collapse
Affiliation(s)
- Rachel D Vanderlaan
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|