1
|
GhaffariJolfayi A, Salmanipour A, Heshmat-Ghahdarijani K, MozafaryBazargany M, Azimi A, Pirouzi P, Mohammadzadeh A. Machine learning-based interpretation of non-contrast feature tracking strain analysis and T1/T2 mapping for assessing myocardial viability. Sci Rep 2025; 15:753. [PMID: 39755814 DOI: 10.1038/s41598-024-85029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025] Open
Abstract
Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques-feature tracking strain analysis and T1/T2 mapping-combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment. A retrospective analysis was conducted on 79 patients with myocardial infarction (MI) 2-4 weeks post-event. Patients with prior ischemia or poor imaging quality were excluded to ensure robust data acquisition. Various ML algorithms were applied to data from LGE-CMR and non-contrast CMR techniques. Random forest (RF) demonstrated the highest predictive accuracy, with area under the curve (AUC) values of 0.89, 0.90, and 0.92 for left anterior descending (LAD), right coronary artery (RCA), and left circumflex (LCX) coronary artery territories, respectively. For the LAD territory, RF, k-nearest neighbors (KNN), and logistic regression were the top performers, while RCA showed the best results from RF, neural networks (NN), and KNN. In the LCX territory, RF, NN, and logistic regression were most effective. The integration of T1/T2 mapping and strain analysis significantly enhanced myocardial viability prediction, positioning these non-contrast techniques as promising alternatives to LGE-CMR. ML models, particularly RF, provided superior diagnostic accuracy across coronary territories. Future studies should validate these findings across diverse populations and clinical settings.
Collapse
Affiliation(s)
- Amir GhaffariJolfayi
- Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, University of Medical Sciences, Tehran, Iran
| | - Alireza Salmanipour
- Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, University of Medical Sciences, Tehran, Iran
| | - Kiyan Heshmat-Ghahdarijani
- Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, University of Medical Sciences, Tehran, Iran
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Amir Azimi
- Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, University of Medical Sciences, Tehran, Iran
| | - Pirouz Pirouzi
- Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, University of Medical Sciences, Tehran, Iran
| | - Ali Mohammadzadeh
- Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Forleo C, Carella MC, Basile P, Mandunzio D, Greco G, Napoli G, Carulli E, Dicorato MM, Dentamaro I, Santobuono VE, Memeo R, Latorre MD, Baggiano A, Mushtaq S, Ciccone MM, Pontone G, Guaricci AI. The Role of Magnetic Resonance Imaging in Cardiomyopathies in the Light of New Guidelines: A Focus on Tissue Mapping. J Clin Med 2024; 13:2621. [PMID: 38731153 PMCID: PMC11084160 DOI: 10.3390/jcm13092621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Cardiomyopathies (CMPs) are a group of myocardial disorders that are characterized by structural and functional abnormalities of the heart muscle. These abnormalities occur in the absence of coronary artery disease (CAD), hypertension, valvular disease, and congenital heart disease. CMPs are an increasingly important topic in the field of cardiovascular diseases due to the complexity of their diagnosis and management. In 2023, the ESC guidelines on cardiomyopathies were first published, marking significant progress in the field. The growth of techniques such as cardiac magnetic resonance imaging (CMR) and genetics has been fueled by the development of multimodal imaging approaches. For the diagnosis of CMPs, a multimodal imaging approach, including CMR, is recommended. CMR has become the standard for non-invasive analysis of cardiac morphology and myocardial function. This document provides an overview of the role of CMR in CMPs, with a focus on tissue mapping. CMR enables the characterization of myocardial tissues and the assessment of cardiac functions. CMR sequences and techniques, such as late gadolinium enhancement (LGE) and parametric mapping, provide detailed information on tissue composition, fibrosis, edema, and myocardial perfusion. These techniques offer valuable insights for early diagnosis, prognostic evaluation, and therapeutic guidance of CMPs. The use of quantitative CMR markers enables personalized treatment plans, improving overall patient outcomes. This review aims to serve as a guide for the use of these new tools in clinical practice.
Collapse
Affiliation(s)
- Cinzia Forleo
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (C.F.); (M.C.C.); (P.B.); (D.M.); (G.G.); (G.N.); (E.C.); (M.M.D.); (I.D.); (V.E.S.); (R.M.); (M.D.L.); (M.M.C.)
| | - Maria Cristina Carella
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (C.F.); (M.C.C.); (P.B.); (D.M.); (G.G.); (G.N.); (E.C.); (M.M.D.); (I.D.); (V.E.S.); (R.M.); (M.D.L.); (M.M.C.)
| | - Paolo Basile
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (C.F.); (M.C.C.); (P.B.); (D.M.); (G.G.); (G.N.); (E.C.); (M.M.D.); (I.D.); (V.E.S.); (R.M.); (M.D.L.); (M.M.C.)
| | - Donato Mandunzio
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (C.F.); (M.C.C.); (P.B.); (D.M.); (G.G.); (G.N.); (E.C.); (M.M.D.); (I.D.); (V.E.S.); (R.M.); (M.D.L.); (M.M.C.)
| | - Giulia Greco
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (C.F.); (M.C.C.); (P.B.); (D.M.); (G.G.); (G.N.); (E.C.); (M.M.D.); (I.D.); (V.E.S.); (R.M.); (M.D.L.); (M.M.C.)
| | - Gianluigi Napoli
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (C.F.); (M.C.C.); (P.B.); (D.M.); (G.G.); (G.N.); (E.C.); (M.M.D.); (I.D.); (V.E.S.); (R.M.); (M.D.L.); (M.M.C.)
| | - Eugenio Carulli
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (C.F.); (M.C.C.); (P.B.); (D.M.); (G.G.); (G.N.); (E.C.); (M.M.D.); (I.D.); (V.E.S.); (R.M.); (M.D.L.); (M.M.C.)
| | - Marco Maria Dicorato
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (C.F.); (M.C.C.); (P.B.); (D.M.); (G.G.); (G.N.); (E.C.); (M.M.D.); (I.D.); (V.E.S.); (R.M.); (M.D.L.); (M.M.C.)
| | - Ilaria Dentamaro
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (C.F.); (M.C.C.); (P.B.); (D.M.); (G.G.); (G.N.); (E.C.); (M.M.D.); (I.D.); (V.E.S.); (R.M.); (M.D.L.); (M.M.C.)
| | - Vincenzo Ezio Santobuono
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (C.F.); (M.C.C.); (P.B.); (D.M.); (G.G.); (G.N.); (E.C.); (M.M.D.); (I.D.); (V.E.S.); (R.M.); (M.D.L.); (M.M.C.)
| | - Riccardo Memeo
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (C.F.); (M.C.C.); (P.B.); (D.M.); (G.G.); (G.N.); (E.C.); (M.M.D.); (I.D.); (V.E.S.); (R.M.); (M.D.L.); (M.M.C.)
| | - Michele Davide Latorre
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (C.F.); (M.C.C.); (P.B.); (D.M.); (G.G.); (G.N.); (E.C.); (M.M.D.); (I.D.); (V.E.S.); (R.M.); (M.D.L.); (M.M.C.)
| | - Andrea Baggiano
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (G.P.)
| | - Saima Mushtaq
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (G.P.)
| | - Marco Matteo Ciccone
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (C.F.); (M.C.C.); (P.B.); (D.M.); (G.G.); (G.N.); (E.C.); (M.M.D.); (I.D.); (V.E.S.); (R.M.); (M.D.L.); (M.M.C.)
| | - Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (G.P.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20138 Milan, Italy
| | - Andrea Igoren Guaricci
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (C.F.); (M.C.C.); (P.B.); (D.M.); (G.G.); (G.N.); (E.C.); (M.M.D.); (I.D.); (V.E.S.); (R.M.); (M.D.L.); (M.M.C.)
| |
Collapse
|
3
|
Bolz C, Blaszczyk E, Mayr T, Lim C, Haufe S, Jordan J, Barckow P, Gröschel J, Schulz-Menger J. Adiposity influences on myocardial deformation: a cardiovascular magnetic resonance feature tracking study in people with overweight to obesity without established cardiovascular disease. Int J Cardiovasc Imaging 2024; 40:643-654. [PMID: 38308113 PMCID: PMC10951011 DOI: 10.1007/s10554-023-03034-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 12/13/2023] [Indexed: 02/04/2024]
Abstract
The objective of this study was to assess whether dietary-induced weight loss improves myocardial deformation in people with overweight to obesity without established cardiovascular disease applying cardiovascular magnetic resonance (CMR) with feature tracking (FT) based strain analysis. Ninety people with overweight to obesity without established cardiovascular disease (age 44.6 ± 9.3 years, body mass index (BMI) 32.6 ± 4 kg/m2) underwent CMR. We retrospectively quantified FT based strain and LA size and function at baseline and after a 6-month hypocaloric diet, with either low-carbohydrate or low-fat intake. The study cohort was compared to thirty-four healthy normal-weight controls (age 40.8 ± 16.0 years, BMI 22.5 ± 1.4 kg/m2). At baseline, the study cohort with overweight to obesity without established cardiovascular disease displayed significantly increased global circumferential strain (GCS), global radial strain (GRS) and LA size (all p < 0.0001 versus controls) but normal global longitudinal strain (GLS) and normal LA ejection fraction (all p > 0.05 versus controls). Dietary-induced weight loss led to a significant reduction in GCS, GRS and LA size irrespective of macronutrient composition (all p < 0.01). In a population with overweight to obesity without established cardiovascular disease subclinical myocardial changes can be detected applying CMR. After dietary-induced weight loss improvement of myocardial deformation could be shown. A potential clinical impact needs further studies.
Collapse
Affiliation(s)
- Constantin Bolz
- Charité Universitätsmedizin Berlin, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Edyta Blaszczyk
- Charité Universitätsmedizin Berlin, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany
| | - Thomas Mayr
- Charité Universitätsmedizin Berlin, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Carolin Lim
- Charité Universitätsmedizin Berlin, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Sven Haufe
- Clinic for Rehabilitation and Sports Medicine, Hannover Medical School, Hannover, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Philipp Barckow
- Circle Cardiovascular Imaging Inc., Calgary, Alberta, Canada
| | - Jan Gröschel
- Charité Universitätsmedizin Berlin, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany
| | - Jeanette Schulz-Menger
- Charité Universitätsmedizin Berlin, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany.
- Helios Hospital Berlin-Buch, Department of Cardiology and Nephrology, Berlin, Germany.
| |
Collapse
|
4
|
Gersch S, Lange T, Beuthner BE, Elkenani M, Paul N, Schnelle M, Zeisberg E, Puls M, Hasenfuß G, Schuster A, Toischer K. Low-flow in aortic valve stenosis patients with reduced ejection fraction does not depend on left ventricular function. Clin Res Cardiol 2024:10.1007/s00392-023-02372-4. [PMID: 38236417 DOI: 10.1007/s00392-023-02372-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/30/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Patients with severe aortic stenosis (AS) and reduced left ventricular ejection fraction (LVEF) can be distinguished into high- (HG) and low-gradient (LG) subgroups. However, less is known about their characteristics and underlying (pathophysiological) hemodynamic mechanisms. METHODS 98 AS patients with reduced LVEF were included. Subgroup characteristics were analyzed by a multimodal approach using clinical and histological data, next-generation sequencing (NGS) and applying echocardiography as well as cardiovascular magnetic resonance (CMR) imaging. Biopsy samples were analyzed with respect to fibrosis and mRNA expression profiles. RESULTS 40 patients were classified as HG-AS and 58 patients as LG-AS. Severity of AS was comparable between the subgroups. Comparison of both subgroups revealed no differences in LVEF (p = 0.1), LV mass (p = 0.6) or end-diastolic LV diameter (p = 0.12). Neither histological (HG: 23.2% vs. LG: 25.6%, p = 0.73) and circulating biomarker-based assessment (HG: 2.6 ± 2.2% vs. LG: 3.2 ± 3.1%; p = 0.46) of myocardial fibrosis nor global gene expression patterns differed between subgroups. Mitral regurgitation (MR), atrial fibrillation (AF) and impaired right ventricular function (MR: HG: 8% vs. LG: 24%; p < 0.001; AF: HG: 30% vs. LG: 51.7%; p = 0.03; RVSVi: HG 36.7 vs. LG 31.1 ml/m2, p = 0.045; TAPSE: HG 20.2 vs. LG 17.3 mm, p = 0.002) were more frequent in LG-AS patients compared to HG-AS. These pathologies could explain the higher mortality of LG vs. HG-AS patients. CONCLUSION In patients with low-flow severe aortic stenosis, low transaortic gradient and cardiac output are not primarily due to LV dysfunction or global changes in gene expression, but may be attributed to other additional cardiac pathologies like mitral regurgitation, atrial fibrillation or right ventricular dysfunction. These factors should also be considered during planning of aortic valve replacement.
Collapse
Affiliation(s)
- Svante Gersch
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Torben Lange
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Bo Eric Beuthner
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Manar Elkenani
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Niels Paul
- Department of Bioinformatics, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Moritz Schnelle
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Elisabeth Zeisberg
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Miriam Puls
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Karl Toischer
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, 37075, Göttingen, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
5
|
Lange T, Backhaus SJ, Schulz A, Evertz R, Schneider P, Kowallick JT, Hasenfuß G, Kelle S, Schuster A. Inter-study reproducibility of cardiovascular magnetic resonance-derived hemodynamic force assessments. Sci Rep 2024; 14:634. [PMID: 38182625 PMCID: PMC10770352 DOI: 10.1038/s41598-023-50405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
Cardiovascular magnetic resonance (CMR)-derived hemodynamic force (HDF) analyses have been introduced recently enabling more in-depth cardiac function evaluation. Inter-study reproducibility is important for a widespread clinical use but has not been quantified for this novel CMR post-processing tool yet. Serial CMR imaging was performed in 11 healthy participants in a median interval of 63 days (range 49-87). HDF assessment included left ventricular (LV) longitudinal, systolic peak and impulse, systolic/diastolic transition, diastolic deceleration as well as atrial thrust acceleration forces. Inter-study reproducibility and study sample sizes required to demonstrate 10%, 15% or 20% relative changes of HDF measurements were calculated. In addition, intra- and inter-observer analyses were performed. Intra- and inter-observer reproducibility was excellent for all HDF parameters according to intraclass correlation coefficient (ICC) values (> 0.80 for all). Inter-study reproducibility of all HDF parameters was excellent (ICC ≥ 0.80 for all) with systolic parameters showing lower coeffients of variation (CoV) than diastolic measurements (CoV 15.2% for systolic impulse vs. CoV 30.9% for atrial thrust). Calculated sample sizes to detect relative changes ranged from n = 12 for the detection of a 20% relative change in systolic impulse to n = 200 for the detection of 10% relative change in atrial thrust. Overall inter-study reproducibility of CMR-derived HDF assessments was sufficient with systolic HDF measurements showing lower inter-study variation than diastolic HDF analyses.
Collapse
Affiliation(s)
- Torben Lange
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Sören J Backhaus
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Alexander Schulz
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Ruben Evertz
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Patrick Schneider
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Johannes T Kowallick
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- Institute for Diagnostic and Interventional Radiology, Georg-August University, University Medical Center Göttingen, Göttingen, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Sebastian Kelle
- Department of Internal Medicine/Cardiology, Charité Campus Virchow Clinic, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
6
|
Shen LT, Shi R, Yang ZG, Gao Y, Jiang YN, Fang H, Min CY, Li Y. Progress in Cardiac Magnetic Resonance Feature Tracking for Evaluating Myocardial Strain in Type-2 Diabetes Mellitus. Curr Diabetes Rev 2024; 20:98-109. [PMID: 38310480 PMCID: PMC11327751 DOI: 10.2174/0115733998277127231211063107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/28/2023] [Accepted: 11/10/2023] [Indexed: 02/05/2024]
Abstract
The global prevalence of type-2 diabetes mellitus (T2DM) has caused harm to human health and economies. Cardiovascular disease is one main cause of T2DM mortality. Increased prevalence of diabetes and associated heart failure (HF) is common in older populations, so accurately evaluating heart-related injury and T2DM risk factors and conducting early intervention are important. Quantitative cardiovascular system imaging assessments, including functional imaging during cardiovascular disease treatment, are also important. The left-ventricular ejection fraction (LVEF) has been traditionally used to monitor cardiac function; it is often preserved or increased in early T2DM, but subclinical heart deformation and dysfunction can occur. Myocardial strains are sensitive to global and regional heart dysfunction in subclinical T2DM. Cardiac magnetic resonance feature-tracking technology (CMR-FT) can visualize and quantify strain and identify subclinical myocardial injury for early management, especially with preserved LVEF. Meanwhile, CMR-FT can be used to evaluate the multiple cardiac chambers involvement mediated by T2DM and the coexistence of complications. This review discusses CMR-FT principles, clinical applications, and research progress in the evaluation of myocardial strain in T2DM.
Collapse
Affiliation(s)
- Li-Ting Shen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Shi
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Gao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi-Ning Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Han Fang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chen-Yan Min
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Lange T, Gertz RJ, Schulz A, Backhaus SJ, Evertz R, Kowallick JT, Hasenfuß G, Desch S, Thiele H, Stiermaier T, Eitel I, Schuster A. Impact of myocardial deformation on risk prediction in patients following acute myocardial infarction. Front Cardiovasc Med 2023; 10:1199936. [PMID: 37636296 PMCID: PMC10449121 DOI: 10.3389/fcvm.2023.1199936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Background Strain analyses derived from cardiovascular magnetic resonance-feature tracking (CMR-FT) provide incremental prognostic benefit in patients sufferring from acute myocardial infarction (AMI). This study aims to evaluate and revalidate previously reported prognostic implications of comprehensive strain analyses in a large independent cohort of patients with ST-elevation myocardial infarction (STEMI). Methods Overall, 566 STEMI patients enrolled in the CONDITIONING-LIPSIA trial including pre- and/or postconditioning treatment in addition to conventional percutaneous coronary intervention underwent CMR imaging in median 3 days after primary percutaneous coronary intervention. CMR-based left atrial (LA) reservoir (Es), conduit (Ee), and boosterpump (Ea) strain analyses, as well as left ventricular (LV) global longitudinal strain (GLS), circumferential strain (GCS), and radial strain (GRS) analyses were carried out. Previously identified cutoff values were revalidated for risk stratification. Major adverse cardiac events (MACE) comprising death, reinfarction, and new congestive heart failure were assessed within 12 months after the occurrence of the index event. Results Both atrial and ventricular strain values were significantly reduced in patients with MACE (p < 0.01 for all). Predetermined LA and LV strain cutoffs enabled accurate risk assessment. All LA and LV strain values were associated with MACE on univariable regression modeling (p < 0.001 for all), with LA Es emerging as an independent predictor of MACE on multivariable regression modeling (HR 0.92, p = 0.033). Furthermore, LA Es provided an incremental prognostic value above LVEF (a c-index increase from 0.7 to 0.74, p = 0.03). Conclusion External validation of CMR-FT-derived LA and LV strain evaluations confirmed the prognostic value of cardiac deformation assessment in STEMI patients. In the present study, LA strain parameters especially enabled further risk stratification and prognostic assessment over and above clinically established risk parameters. Clinical Trial Registration ClinicalTrials.gov, identifier NCT02158468.
Collapse
Affiliation(s)
- Torben Lange
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Roman J. Gertz
- Institute for Diagnostic and Interventional Radiology,Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexander Schulz
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Sören J. Backhaus
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Ruben Evertz
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Johannes T. Kowallick
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Steffen Desch
- Department of Internal Medicine/Cardiology and Leipzig Heart Science, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Holger Thiele
- Department of Internal Medicine/Cardiology and Leipzig Heart Science, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Thomas Stiermaier
- Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), University Heart Center Lübeck, University Hospital Schleswig-Holstein, Lübeck, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Ingo Eitel
- Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), University Heart Center Lübeck, University Hospital Schleswig-Holstein, Lübeck, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Fijalkowska J, Glinska A, Fijalkowski M, Sienkiewicz K, Kulawiak-Galaska D, Szurowska E, Pienkowska J, Dorniak K. Cardiac Magnetic Resonance Relaxometry Parameters, Late Gadolinium Enhancement, and Feature-Tracking Myocardial Longitudinal Strain in Patients Recovered from COVID-19. J Cardiovasc Dev Dis 2023; 10:278. [PMID: 37504534 PMCID: PMC10380498 DOI: 10.3390/jcdd10070278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
COVID-19 infection is associated with myocarditis, and cardiovascular magnetic resonance (CMR) is the reference non-invasive imaging modality for myocardial tissue characterization. Quantitative CMR techniques, such as feature tracking (FT) and left ventricular global longitudinal strain (GLS) analysis, have been introduced as promising diagnostic tools to improve the diagnostic accuracy of suspected myocarditis. The aim of this study was to analyze the left ventricular global longitudinal strain (GLS) and the influence of T1 and T2 relaxation times, ECV, and LGE appearance on GLS parameters in a multiparametric imaging protocol in patients who recovered from COVID-19. The 86 consecutive patients enrolled in the study had all recovered from mild or moderate COVID-19 infections; none required hospitalization. Their persistent symptoms and suspected myocarditis led to cardiac magnetic resonance imaging within 3 months of the diagnosis of the SARS-CoV-2 infection. Results: Patients with GLS less negative than -15% had significantly lower LVEF (53.6% ± 8.9 vs. 61.6% ± 4.8; <0.001) and were significantly more likely to have prolonged T1 (28.6% vs. 7.5%; p = 0.019). Left ventricular GLS correlated significantly with T1 (r = 0.303; p = 0.006) and LVEF (r = -0.732; p < 0.001). Left ventricular GLS less negative than -15% was 7.5 times more likely in patients with prolonged T1 (HR 7.62; 95% CI 1.25-46.64). The reduced basal inferolateral longitudinal strain had a significant impact on the global left ventricular longitudinal strain. ROC results suggested that a GLS of 14.5% predicted prolonged T1 relaxation time with the best sensitivity and specificity. Conclusions: CMR abnormalities, including a myocarditis pattern, are common in patients who have recovered from COVID-19. The CMR feature-tracking left ventricular GLS is related to T1 relaxation time and may serve as a novel parameter to detect global and regional myocardial injury and dysfunction in patients with suspected myocardial involvement after recovery from COVID-19.
Collapse
Affiliation(s)
- Jadwiga Fijalkowska
- Second Department of Radiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Anna Glinska
- Second Department of Radiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marcin Fijalkowski
- First Department of Cardiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | | | | | - Edyta Szurowska
- Second Department of Radiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Joanna Pienkowska
- Second Department of Radiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Karolina Dorniak
- Department of Noninvasive Cardiac Diagnostics, Medical University of Gdansk, 80-211 Gdansk, Poland
| |
Collapse
|
9
|
Soghomonian A, Dutour A, Kachenoura N, Thuny F, Lasbleiz A, Ancel P, Cristofari R, Jouve E, Simeoni U, Kober F, Bernard M, Gaborit B. Is increased myocardial triglyceride content associated with early changes in left ventricular function? A 1H-MRS and MRI strain study. Front Endocrinol (Lausanne) 2023; 14:1181452. [PMID: 37424866 PMCID: PMC10323751 DOI: 10.3389/fendo.2023.1181452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Background Type 2 diabetes (T2D) and obesity induce left ventricular (LV) dysfunction. The underlying pathophysiological mechanisms remain unclear, but myocardial triglyceride content (MTGC) could be involved. Objectives This study aimed to determine which clinical and biological factors are associated with increased MTGC and to establish whether MTGC is associated with early changes in LV function. Methods A retrospective study was conducted using five previous prospective cohorts, leading to 338 subjects studied, including 208 well-phenotyped healthy volunteers and 130 subjects living with T2D and/or obesity. All the subjects underwent proton magnetic resonance spectroscopy and feature tracking cardiac magnetic resonance imaging to measure myocardial strain. Results MTGC content increased with age, body mass index (BMI), waist circumference, T2D, obesity, hypertension, and dyslipidemia, but the only independent correlate found in multivariate analysis was BMI (p=0.01; R²=0.20). MTGC was correlated to LV diastolic dysfunction, notably with the global peak early diastolic circumferential strain rate (r=-0.17, p=0.003), the global peak late diastolic circumferential strain rate (r=0.40, p<0.0001) and global peak late diastolic longitudinal strain rate (r=0.24, p<0.0001). MTGC was also correlated to systolic dysfunction via end-systolic volume index (r=-0.34, p<0.0001) and stroke volume index (r=-0.31, p<0.0001), but not with longitudinal strain (r=0.009, p=0.88). Interestingly, the associations between MTGC and strain measures did not persist in multivariate analysis. Furthermore, MTGC was independently associated with LV end-systolic volume index (p=0.01, R²=0.29), LV end-diastolic volume index (p=0.04, R²=0.46), and LV mass (p=0.002, R²=0.58). Conclusions Predicting MTGC remains a challenge in routine clinical practice, as only BMI independently correlates with increased MTGC. MTGC may play a role in LV dysfunction but does not appear to be involved in the development of subclinical strain abnormalities.
Collapse
Affiliation(s)
- Astrid Soghomonian
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, Marseille, France
| | - Anne Dutour
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, Marseille, France
| | - Nadjia Kachenoura
- Sorbonne Université, INSERM, CNRS, Laboratoire d’Imagerie Biomédicale, Paris, France
| | - Franck Thuny
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- Intensive Care Unit, Department of Cardiology, Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Aix-Marseille University, Marseille, France
| | - Adele Lasbleiz
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, Marseille, France
| | - Patricia Ancel
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
| | | | - Elisabeth Jouve
- UPCET, Clinical Pharmacology, Assistance-Publique Hôpitaux de Marseille, Marseille, France
| | - Umberto Simeoni
- Division of Pediatrics & DOHaD Laboratory, CHUV University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Frank Kober
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France
| | | | - Bénédicte Gaborit
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, Marseille, France
| |
Collapse
|
10
|
Jiang X, Yan Y, Yang Z, Wen M, Long Y, Fu B, Jiang J. Diagnostic accuracy of left atrial function and strain for differentiating between acute and chronic myocardial infarction. BMC Cardiovasc Disord 2023; 23:218. [PMID: 37118657 PMCID: PMC10148459 DOI: 10.1186/s12872-023-03254-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/20/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND The cardiac magnetic resonance tissue tracking (CMR-TT) technique was used to obtain left atrial strain and strain rate in patients with myocardial infarction (MI) and to evaluate the utility of this technique in the quantitative assessment of myocardial infarction for distinguishing acute from chronic myocardial infarction. METHODS We retrospectively analyzed 36 consecutive patients with acute myocardial infarction (AMI) and 29 patients with chronic myocardial infarction (CMI) who underwent CMR and 30 controls. Left atrial (LA) and ventricular functions were quantified by volumetric, and CMR-TT derived strain analysis from long and short left ventricular view cines. Receiver Operating Characteristics (ROC) analysis was used to determine the diagnostic accuracy of CMR-TT strain parameters for discriminating between acute and chronic myocardial infarction. RESULTS AMI and CMI participants had impaired LA reservoir function, conduit function and LA booster pump dysfunction compared to the controls. LA strain was more sensitive than LV global strain for the assessment of the MI stage. Peak late-negative SR yielded the best areas under the ROC curve (AUC) of 0.879, showing differentiation between acute and chronic myocardial infarction of all the LA strain parameters obtained. The highest significant differences between chronic myocardial infarction and normal myocardium were also found in the LV strain (p < 0.001) and LA functional parameters (p < 0.001), but there was no difference between AMI and normals. CONCLUSIONS CMR-TT-derived LA strain is a potential and robust tool in demonstrating impaired LA mechanics and quantifying LA dynamics, which have high sensitivity and specificity in the differential diagnosis of acute versus chronic myocardial infarction. Their use is thus worth popularizing in clinical application.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Yi Yan
- Department of Pain, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhi Yang
- The Fifth People's Hospital of Chengdu, Chengdu, China
| | - Miao Wen
- The Fifth People's Hospital of Chengdu, Chengdu, China
| | - Yitian Long
- The Fifth People's Hospital of Chengdu, Chengdu, China
| | - Bing Fu
- The Fifth People's Hospital of Chengdu, Chengdu, China
| | - Jian Jiang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| |
Collapse
|
11
|
Durr AJ, Korol AS, Hathaway QA, Kunovac A, Taylor AD, Rizwan S, Pinti MV, Hollander JM. Machine learning for spatial stratification of progressive cardiovascular dysfunction in a murine model of type 2 diabetes mellitus. PLoS One 2023; 18:e0285512. [PMID: 37155623 PMCID: PMC10166525 DOI: 10.1371/journal.pone.0285512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023] Open
Abstract
Speckle tracking echocardiography (STE) has been utilized to evaluate independent spatial alterations in the diabetic heart, but the progressive manifestation of regional and segmental cardiac dysfunction in the type 2 diabetic (T2DM) heart remains understudied. Therefore, the objective of this study was to elucidate if machine learning could be utilized to reliably describe patterns of the progressive regional and segmental dysfunction that are associated with the development of cardiac contractile dysfunction in the T2DM heart. Non-invasive conventional echocardiography and STE datasets were utilized to segregate mice into two pre-determined groups, wild-type and Db/Db, at 5, 12, 20, and 25 weeks. A support vector machine model, which classifies data using a single line, or hyperplane, that best separates each class, and a ReliefF algorithm, which ranks features by how well each feature lends to the classification of data, were used to identify and rank cardiac regions, segments, and features by their ability to identify cardiac dysfunction. STE features more accurately segregated animals as diabetic or non-diabetic when compared with conventional echocardiography, and the ReliefF algorithm efficiently ranked STE features by their ability to identify cardiac dysfunction. The Septal region, and the AntSeptum segment, best identified cardiac dysfunction at 5, 20, and 25 weeks, with the AntSeptum also containing the greatest number of features which differed between diabetic and non-diabetic mice. Cardiac dysfunction manifests in a spatial and temporal fashion, and is defined by patterns of regional and segmental dysfunction in the T2DM heart which are identifiable using machine learning methodologies. Further, machine learning identified the Septal region and AntSeptum segment as locales of interest for therapeutic interventions aimed at ameliorating cardiac dysfunction in T2DM, suggesting that machine learning may provide a more thorough approach to managing contractile data with the intention of identifying experimental and therapeutic targets.
Collapse
Affiliation(s)
- Andrya J Durr
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
| | - Anna S Korol
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
| | - Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
| | - Andrew D Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
| | - Saira Rizwan
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
| | - Mark V Pinti
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
- West Virginia University School of Pharmacy, Morgantown, West Virginia, United States of America
- Department of Physiology and Pharmacology, West Virginia University School of Pharmacy, Morgantown, West Virginia, United States of America
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
| |
Collapse
|
12
|
Feature tracking strain analysis detects the onset of regional diastolic dysfunction in territories with acute myocardial injury induced by transthoracic electrical interventions. Sci Rep 2022; 12:19532. [PMID: 36376457 PMCID: PMC9663508 DOI: 10.1038/s41598-022-24199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Electric interventions are used to terminate arrhythmia. However, myocardial injury from the electrical intervention can follow unique pathways and it is unknown how this affects regional ventricular function. This study investigated the impact of transthoracic electrical shocks on systolic and diastolic myocardial deformation. Ten healthy anaesthetized female swine received five transthoracic shocks (5 × 200 J) and six controls underwent a cardiovascular magnetic resonance exam prior to and 5 h after the intervention. Serial transthoracic shocks led to a global reduction in both left (LV, - 15.6 ± 3.3% to - 13.0 ± 3.6%, p < 0.01) and right ventricular (RV, - 16.1 ± 2.3% to - 12.8 ± 4.2%, p = 0.03) peak circumferential strain as a marker of systolic function and to a decrease in LV early diastolic strain rate (1.19 ± 0.35/s to 0.95 ± 0.37/s, p = 0.02), assessed by feature tracking analysis. The extent of myocardial edema (ΔT1) was related to an aggravation of regional LV and RV diastolic dysfunction, whereas only RV systolic function was regionally associated with an increase in T1. In conclusion, serial transthoracic shocks in a healthy swine model attenuate biventricular systolic function, but it is the acute development of regional diastolic dysfunction that is associated with the onset of colocalized myocardial edema.
Collapse
|
13
|
Alshammari QT, Almutairi W, Alshammari E, Alrashidi O, Alshammari MT, Alyahyawi. AR, Alzamil Y, Shahanawaz SD, Shashi CGK. Cardiac Magnetic Resonance Imaging Feature Tracking for Quantifying Left Ventricle Deformation in Type 2 Diabetic Patients. INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND ALLIED SCIENCES 2022. [DOI: 10.51847/dgpw4yl4ox] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|