1
|
Isavand P, Aghamiri SS, Amin R. Applications of Multimodal Artificial Intelligence in Non-Hodgkin Lymphoma B Cells. Biomedicines 2024; 12:1753. [PMID: 39200217 PMCID: PMC11351272 DOI: 10.3390/biomedicines12081753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Given advancements in large-scale data and AI, integrating multimodal artificial intelligence into cancer research can enhance our understanding of tumor behavior by simultaneously processing diverse biomedical data types. In this review, we explore the potential of multimodal AI in comprehending B-cell non-Hodgkin lymphomas (B-NHLs). B-cell non-Hodgkin lymphomas (B-NHLs) represent a particular challenge in oncology due to tumor heterogeneity and the intricate ecosystem in which tumors develop. These complexities complicate diagnosis, prognosis, and therapy response, emphasizing the need to use sophisticated approaches to enhance personalized treatment strategies for better patient outcomes. Therefore, multimodal AI can be leveraged to synthesize critical information from available biomedical data such as clinical record, imaging, pathology and omics data, to picture the whole tumor. In this review, we first define various types of modalities, multimodal AI frameworks, and several applications in precision medicine. Then, we provide several examples of its usage in B-NHLs, for analyzing the complexity of the ecosystem, identifying immune biomarkers, optimizing therapy strategy, and its clinical applications. Lastly, we address the limitations and future directions of multimodal AI, highlighting the need to overcome these challenges for better clinical practice and application in healthcare.
Collapse
Affiliation(s)
- Pouria Isavand
- Department of Radiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran
| | | | - Rada Amin
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68503, USA
| |
Collapse
|
2
|
Cyr MG, Mhibik M, Qi J, Peng H, Chang J, Gaglione EM, Eik D, Herrick J, Venables T, Novick SJ, Courouble VV, Griffin PR, Wiestner A, Rader C. Patient-derived Siglec-6-targeting antibodies engineered for T-cell recruitment have potential therapeutic utility in chronic lymphocytic leukemia. J Immunother Cancer 2022; 10:e004850. [PMID: 36442911 PMCID: PMC9710465 DOI: 10.1136/jitc-2022-004850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Despite numerous therapeutic options, safe and curative therapy is unavailable for most patients with chronic lymphocytic leukemia (CLL). A drawback of current therapies such as the anti-CD20 monoclonal antibody (mAb) rituximab is the elimination of all healthy B cells, resulting in impaired humoral immunity. We previously reported the identification of a patient-derived, CLL-binding mAb, JML-1, and identified sialic acid-binding immunoglobulin-like lectin-6 (Siglec-6) as the target of JML-1. Although little is known about Siglec-6, it appears to be an attractive target for cancer immunotherapy due to its absence on most healthy cells and tissues. METHODS We used a target-specific approach to mine for additional patient-derived anti-Siglec-6 mAbs. To assess the therapeutic utility of targeting Siglec-6 in the context of CLL, T cell-recruiting bispecific antibodies (T-biAbs) that bind to Siglec-6 and CD3 were engineered into single-chain variable fragment-Fc and dual-affinity retargeting (DART)-Fc constructs. T-biAbs were evaluated for their activity in vitro, ex vivo, and in vivo. RESULTS We discovered the anti-Siglec-6 mAbs RC-1 and RC-2, which bind with higher affinity than JML-1 yet maintain similar specificity. Both JML-1 and RC-1 T-biAbs were effective at activating T cells and killing Siglec-6+ target cells. The RC-1 clone in the DART-Fc format was the most potent T-biAb tested and was the only anti-Siglec-6 T-biAb that eliminated Siglec-6+ primary CLL cells via autologous T cells at pathological T-to-CLL cell ratios. Tested at healthy T-to-B cell ratios, it also eliminated a Siglec-6+ fraction of primary B cells from healthy donors. The subpicomolar potency of the DART-Fc format was attributed to the reduction in the length and flexibility of the cytolytic synapse. Furthermore, the RC-1 T-biAb was effective at clearing MEC1 CLL cells in vivo and demonstrated a circulatory half-life of over 7 days. CONCLUSION Siglec-6-targeting T-biAbs are highly potent and specific for eliminating Siglec-6+ leukemic and healthy B cells while sparing Siglec-6- healthy B cells, suggesting a unique treatment strategy for CLL with diminished suppression of humoral immunity. Our data corroborate reports that T-biAb efficacy is dependent on synapse geometry and reveal that synapse architecture can be tuned via antibody engineering. Our fully human anti-Siglec-6 antibodies and T-biAbs have potential for cancer immunotherapy. TRIAL REGISTRATION NUMBER NCT00923507.
Collapse
Affiliation(s)
- Matthew G Cyr
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida, USA
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida, USA
| | - Maissa Mhibik
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Junpeng Qi
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida, USA
| | - Haiyong Peng
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida, USA
| | - Jing Chang
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida, USA
| | - Erika M Gaglione
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David Eik
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - John Herrick
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas Venables
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida, USA
| | - Scott J Novick
- Department of Molecular Medicine, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida, USA
| | - Valentine V Courouble
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida, USA
- Department of Molecular Medicine, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida, USA
| | - Patrick R Griffin
- Department of Molecular Medicine, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida, USA
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida, USA
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida, USA
| |
Collapse
|
4
|
Chimeric antigen receptor therapy in hematological malignancies: antigenic targets and their clinical research progress. Ann Hematol 2020; 99:1681-1699. [PMID: 32388608 DOI: 10.1007/s00277-020-04020-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/02/2020] [Indexed: 12/20/2022]
Abstract
Chimeric antigen receptor (CAR)-based immunotherapy has achieved dramatic success in the treatment of B cell malignancies, based on the summary of current research data, and has shown good potential in early phase cancer clinical trials. Modified constructs are being optimized to recognize and destroy tumor cells more effectively. By targeting the proper B-lineage-specific antigens such as CD19 and CD20, adoptive immunotherapy has demonstrated promising clinical results and already plays a role in the treatment of several lymphoid malignancies, which highlights the importance of target selection for other CAR therapies. The high efficacy of CAR-T cells has resulted in the approval of anti-CD19-directed CAR-T cells for the treatment of B cell malignancies. In this review, we focus on the basic structure and current clinical application of CAR-T cells, detail the research progress of CAR-T for different antigenic targets in hematological malignancies, and further discuss the current barriers and proposed solutions, investigating the possible mechanisms of recurrence of CAR-T cell therapy. A summary of the paper is also given to overview as the prospects for this therapy.
Collapse
|
5
|
Outcome of Relapsed Pediatric Patients After Second Allogeneic Hematopoetic Stem Cell Transplantation: A Retrospective Study From a Single Institution. J Pediatr Hematol Oncol 2019; 41:e506-e509. [PMID: 31045625 DOI: 10.1097/mph.0000000000001507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Prognosis of relapsed leukemia patients after second allogeneic hematopoietic stem cell transplantation (HSCT2) is historically considered very poor. We report the outcome of 18 pediatric patients after failure of HSCT2. The 2-year overall survival was 26% (95% confidence interval [CI], 6-47). The lymphoid malignancies were associated with better survival (40% [95% CI, 12-68]) than myeloid malignancies (0%, P=0.002), together with time to relapse after the HSCT2 (≥5 mo: 44% [95% CI, 12-76] vs. 0% for patients who relapsed within 5 mo from HSCT2, P=0.005), other factors such as sex, donor type, conditioning regimen, and graft versus host disease prophylaxis did not have statistical significance. When the multivariate analysis was carried out, 2 independent protective factors were identified: the lymphoid malignancies and the graft versus host disease 0 to I after HSCT2. When we look at the treatments, patients receiving blinatumomab after relapse got benefit in terms of overall survival and, more importantly, with a long-term control of acute lymphoblastic leukemia.
Collapse
|
6
|
Mihăilă RG. Chimeric Antigen Receptor-Engineered T-Cells - A New Way and Era for Lymphoma Treatment. Recent Pat Anticancer Drug Discov 2019; 14:312-323. [PMID: 31642414 DOI: 10.2174/1574892814666191022164641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Patients with refractory or relapsed diffuse large B-cell lymphoma have a poor prognosis with the current standard of care. OBJECTIVE Chimeric Antigen Receptor T-cells (CAR T-cells) are functionally reprogrammed lymphocytes, which are able to recognize and kill tumor cells. The aim of this study is to make progress in this area. METHODS A mini-review was achieved using the articles published in Web of Science and PubMed in the last year and the new patents were made in this field. RESULTS The responses to CAR T-cell products axicabtagene ciloleucel and tisagenlecleucel are promising; the objective response rate can reach up to 83%, and the complete response rate ranges between 40 and 58%. About half of the patients may have serious side effects, such as cytokine release syndrome and neurotoxicity. Current and future developments include the improvement of CAR T-cell expansion and polyfunctionality, the combined use of CAR T-cells with a fusion protein between interferon and an anti-CD20 monoclonal antibody, with checkpoint inhibitors or small molecule sensitizers that have apoptotic-regulatory effects. Furthermore, the use of IL-12-expressing CAR T-cells, an improved technology for the production of CAR T-cells based on targeted nucleases, the widespread use of allogeneic CAR T-cells or universal CAR T-cells obtained from genetically engineered healthy donor T-cells are future developments actively considered. CONCLUSION CAR T-cell therapy significantly improved the outcome of patients with relapsed or refractory diffuse large B-cell lymphoma. The advances in CAR T-cells production technology will improve the results and enable the expansion of this new immunotherapy.
Collapse
Affiliation(s)
- Romeo G Mihăilă
- "Lucian Blaga" University of Sibiu, Faculty of Medicine, Emergency County Clinical Hospital Sibiu, Sibiu 550169, Romania
| |
Collapse
|
7
|
Patel DA. Haploidentical Stem Cell Transplantation With Post-Transplantation Cyclophosphamide for Aggressive Lymphomas: How Far Have We Come and Where Are We Going? World J Oncol 2019; 10:1-9. [PMID: 30834047 PMCID: PMC6396776 DOI: 10.14740/wjon1164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/14/2018] [Indexed: 01/14/2023] Open
Abstract
Haploidentical hematopoietic stem cell transplantation (haplo-HSCT) with post-transplant cyclophosphamide (PTCy) offers universal donor availability and can potentially cure relapsed or primary refractory Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL). However, a conditioning regimen intensity that balances the graft-versus-lymphoma (GvL) effect with regimen-related toxicities (RRTs) has not yet been optimized. Limited data exist on the management of relapse, which is common post-transplant. Few prospective or randomized control trials have been conducted on lymphoma patients undergoing haplo-HSCT. Therefore, the current review aims to summarize published retrospective data in the field to help guide clinical decision making for high-risk patients. Retrospective studies in the field are characterized by variability in patient population and sample sizes, eligibility criteria, number of prior treatments (e.g., chemotherapy, radiation therapy, and autologous transplant), graft source (bone marrow or peripheral blood), as well as choice and intensity of the conditioning regimen (non-myeloablative, reduced intensity, or myeloablative). Nonetheless, common themes that emerge from the literature include: 1) Enhanced donor availability and selection with haplo-HSCT with success in heterogeneous patient populations; 2) Outcomes that are comparable if not superior to matched related (MRD) or unrelated (MUD) donor transplants; 3) The benefit of PTCy for reducing incidence of relapse and chronic graft-versus-host disease (GvHD); 4) Presence of co-morbidities leading to poorer transplant-related outcomes; and 5) The need for novel approaches to address disease relapse, particularly for patients with active disease at the time of transplant. Excellent transplant-related outcomes with haplo-HSCT with PTCy have been seen for HL and NHL based on retrospective data. Further studies are needed to determine integration with advanced cellular therapy techniques, such as chimeric antigen receptor (CAR) T-cell, antibody drug conjugates, and checkpoint inhibitors. Graft manipulation may be another avenue for future research.
Collapse
Affiliation(s)
- Dilan A Patel
- Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA.
| |
Collapse
|