1
|
Ozdemir-Sanci T, Piskin I, Köksal Y, Cayli S, Ozbek NY, Ozguner HM. The dynamic interaction of pediatric ALL cells and MSCs: influencing leukemic cell survival and modulating MSC β-catenin expression. Histochem Cell Biol 2025; 163:26. [PMID: 39836255 DOI: 10.1007/s00418-025-02353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
Bone marrow mesenchymal stromal cells (BM-MSCs) are integral components of the bone marrow microenvironment, playing a crucial role in supporting hematopoiesis. Recent studies have investigated the potential involvement of BM-MSCs in the pathophysiology of acute lymphoblastic leukemia (ALL). However, the exact contribution of BM-MSCs to leukemia progression remains unclear because of conflicting findings and limited characterization. In this study, we compared BM-MSCs derived from pediatric ALL patients with those from matched healthy donors (HDs). Our results indicate that while both ALL-MSCs and HD-MSCs meet the criteria established by the International Society for Cellular Therapy, they exhibit significant differences in proliferation and differentiation capacity. ALL-MSCs displayed markedly lower proliferation rates and reduced osteogenic/adipogenic differentiation potential compared to HD-MSCs. Furthermore, co-culture experiments revealed that MSCs enhance the survival of leukemic blasts through both soluble factors and direct cell-cell interactions, underscoring their anti-apoptotic properties. Importantly, our findings demonstrate that interactions with leukemic cells activate the Wnt/β-catenin signaling pathway in MSCs, suggesting a potential target for therapeutic intervention. Overall, this study enhances our understanding of the role of BM-MSCs in leukemia and highlights β-catenin as a promising target for future therapies.
Collapse
Affiliation(s)
- Tuba Ozdemir-Sanci
- Department of Histology and Embryology, Faculty of Medicine, Ankara Yildirim Beyazit University, 06800, Ankara, Turkey
| | - Ilkay Piskin
- Department of Histology and Embryology, Faculty of Medicine, Ankara Yildirim Beyazit University, 06800, Ankara, Turkey
| | - Yasin Köksal
- Stem Cell Research Laboratory, Ankara City Children's Hospital, Ankara, Turkey
| | - Sevil Cayli
- Department of Histology and Embryology, Faculty of Medicine, Ankara Yildirim Beyazit University, 06800, Ankara, Turkey
| | - Namik Y Ozbek
- Department of Pediatric Hematology and Oncology, Ankara City Children's Hospital, Ankara, Turkey
| | - H Meltem Ozguner
- Department of Histology and Embryology, Faculty of Medicine, Ankara Yildirim Beyazit University, 06800, Ankara, Turkey.
- Stem Cell Research Laboratory, Ankara City Children's Hospital, Ankara, Turkey.
| |
Collapse
|
2
|
Rudzinska-Radecka M, Turos-Korgul L, Mukherjee D, Podszywalow-Bartnicka P, Piwocka K, Guzowski J. High-throughput formulation of reproducible 3D cancer microenvironments for drug testing in myeloid leukemia. Biofabrication 2024; 17:015035. [PMID: 39622161 DOI: 10.1088/1758-5090/ad998d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Leukemic microenvironment has been recognized as a factor that strongly supports the mechanisms of resistance. Therefore, targeting the microenvironment is currently one of the major directions in drug development and preclinical studies in leukemia. Despite the variety of available leukemia 3D culture models, the reproducible generation of miniaturized leukemic microenvironments, suitable for high-throughput drug testing, has remained a challenge. Here, we use droplet microfluidics to generate tens of thousands of highly monodisperse leukemic-bone marrow microenvironments within minutes. We employ gelatin methacryloyl (GelMA) as a model extracellular matrix (ECM) and tune the concentration of the biopolymer, check the impact of other components of the ECM (hyaluronic acid), cell concentration and the ratio of leukemic cells to bone marrow cells within the microbeads to establish the optimal conditions for microtissue formation. We administer model kinase inhibitor, imatinib, at various concentrations to the encapsulated leukemic microtissues, and, via comparing mono- and co-culture conditions (cancer alone vs cancer-stroma), we find that the stroma-leukemia crosstalk systematically protects the encapsulated cells against the drug-induced cytotoxicity. With that we demonstrate that our system mimics the physiological stroma-dependent protection. We discuss applicability of our model to (i) studying the role of direct- or close-contact interactions between the leukemia and bone marrow cells embedded in microscale 3D ECM on the stroma-mediated protection, and (ii) high-throughput screening of anti-cancer therapeutics in personalized leukemia therapies.
Collapse
Affiliation(s)
- M Rudzinska-Radecka
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
- Equal contribution.v
| | - L Turos-Korgul
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., Warsaw 02-093, Poland
- Equal contribution.v
| | - D Mukherjee
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - P Podszywalow-Bartnicka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., Warsaw 02-093, Poland
| | - K Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., Warsaw 02-093, Poland
| | - J Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
3
|
Pamuk GE, Ehrlich LA. An Overview of Myeloid Blast-Phase Chronic Myeloid Leukemia. Cancers (Basel) 2024; 16:3615. [PMID: 39518058 PMCID: PMC11545322 DOI: 10.3390/cancers16213615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Myeloid blast-phase chronic myeloid leukemia (MBP-CML) is a rare disease with a dismal prognosis. It is twice as common as lymphoid blast-phase CML, and its prognosis is poorer. Despite the success with tyrosine kinase inhibitors in the treatment of chronic-phase CML, the same does not hold true for MBP-CML. In addition to the Philadelphia chromosome, other chromosomal and molecular changes characterize rapid progression. Although some progress in elucidating the biology of MBP-CML has been made, there is need to discover more in order to develop more satisfactory treatment options. Currently, most common treatment options include tyrosine kinase inhibitors (TKIs) as monotherapy or in combination with acute myeloid leukemia-based intensive chemotherapy regimens. Some patients may develop resistance to TKIs via BCR-ABL1-dependent or BCR-ABL1-independent mechanisms. In this paper, we provide an overview of the biology of MBP-CML, the current treatment approaches, and mechanisms of resistance to TKIs. In order to improve treatment responses in these patients, more emphasis should be placed on understanding the biology of myeloid blastic transformation in CML and mechanisms of resistance to TKIs. Although patient numbers are small, randomized clinical trials should be considered.
Collapse
Affiliation(s)
- Gulsum E. Pamuk
- Office of Oncologic Diseases, Center for Drug Evaluation and Research—CDER, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA;
| | | |
Collapse
|
4
|
Dakal TC, Bhushan R, Xu C, Gadi BR, Cameotra SS, Yadav V, Maciaczyk J, Schmidt‐Wolf IGH, Kumar A, Sharma A. Intricate relationship between cancer stemness, metastasis, and drug resistance. MedComm (Beijing) 2024; 5:e710. [PMID: 39309691 PMCID: PMC11416093 DOI: 10.1002/mco2.710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Cancer stem cells (CSCs) are widely acknowledged as the drivers of tumor initiation, epithelial-mesenchymal transition (EMT) progression, and metastasis. Originating from both hematologic and solid malignancies, CSCs exhibit quiescence, pluripotency, and self-renewal akin to normal stem cells, thus orchestrating tumor heterogeneity and growth. Through a dynamic interplay with the tumor microenvironment (TME) and intricate signaling cascades, CSCs undergo transitions from differentiated cancer cells, culminating in therapy resistance and disease recurrence. This review undertakes an in-depth analysis of the multifaceted mechanisms underlying cancer stemness and CSC-mediated resistance to therapy. Intrinsic factors encompassing the TME, hypoxic conditions, and oxidative stress, alongside extrinsic processes such as drug efflux mechanisms, collectively contribute to therapeutic resistance. An exploration into key signaling pathways, including JAK/STAT, WNT, NOTCH, and HEDGEHOG, sheds light on their pivotal roles in sustaining CSCs phenotypes. Insights gleaned from preclinical and clinical studies hold promise in refining drug discovery efforts and optimizing therapeutic interventions, especially chimeric antigen receptor (CAR)-T cell therapy, cytokine-induced killer (CIK) cell therapy, natural killer (NK) cell-mediated CSC-targeting and others. Ultimately use of cell sorting and single cell sequencing approaches for elucidating the fundamental characteristics and resistance mechanisms inherent in CSCs will enhance our comprehension of CSC and intratumor heterogeneity, which ultimately would inform about tailored and personalized interventions.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology LabDepartment of BiotechnologyMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Ravi Bhushan
- Department of ZoologyM.S. CollegeMotihariBiharIndia
| | - Caiming Xu
- Department of General SurgeryThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research InstituteCity of HopeMonroviaCaliforniaUSA
| | - Bhana Ram Gadi
- Stress Physiology and Molecular Biology LaboratoryDepartment of BotanyJai Narain Vyas UniversityJodhpurRajasthanIndia
| | | | - Vikas Yadav
- School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Jarek Maciaczyk
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
| | - Ingo G. H. Schmidt‐Wolf
- Center for Integrated Oncology (CIO)Department of Integrated OncologyUniversity Hospital BonnBonnGermany
| | - Abhishek Kumar
- Manipal Academy of Higher EducationManipalKarnatakaIndia
- Institute of BioinformaticsInternational Technology ParkBangaloreIndia
| | - Amit Sharma
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
- Center for Integrated Oncology (CIO)Department of Integrated OncologyUniversity Hospital BonnBonnGermany
| |
Collapse
|
5
|
Saugues S, Lambert C, Daguenet E, Roth-Guepin G, Huguet F, Cony-Makhoul P, Ansah HJ, Escoffre-Barbe M, Turhan A, Rousselot P, Tchirkov A, Hamroun D, Hermet E, Pereira B, Berger MG. The initial molecular response predicts the deep molecular response but not treatment-free remission maintenance in a real-world chronic myeloid leukemia cohort. Haematologica 2024; 109:2893-2907. [PMID: 38695126 PMCID: PMC11367206 DOI: 10.3324/haematol.2023.284860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/24/2024] [Indexed: 09/03/2024] Open
Abstract
In chronic myeloid leukemia, the identification of early molecular predictors of stable treatment-free remission (TFR) after tyrosine kinase inhibitor (TKI) discontinuation is challenging. The predictive values of residual disease (BCR::ABL1 quantification) at month 3 and 6 and more recently, BCR::ABL1 transcript halving time (HT) have been described, but no study compared the predictive value of different early parameters. Using a real-world cohort of 408 patients, we compared the performance of the EUTOS long-term survival (ELTS) score, BCR::ABL1 HT, and residual disease at month 3 and 6 to predict the molecular response, achievement of the TKI discontinuation criteria, and TFR maintenance. The performances of BCR::ABL1 HT and residual disease at month 3 were similar. Residual disease at month 6 displayed the best performance for predicting the optimal response (area under the ROC curve between 0.81 and 0.92; cut-off values: 0.11% for MR4 at month 24 and 0.12% for MR4.5 at month 48). Conversely, no early parameter predicted reaching the TKI discontinuation criteria and TFR maintenance. We obtained similar results when patients were divided in subgroups by first-line treatment (imatinib vs. second-generation TKI [2G-TKI]). We identified a relationship between ELTS score, earlier milestones and TFR maintenance only in the 2G-TKI group. In conclusion, this first comparative study of early therapeutic response parameters showed that they are excellent indicators of TKI efficacy (BCR::ABL1 transcript reduction) and best responders. Conversely, they did not predict the achievement of the TKI discontinuation criteria and TFR maintenance, suggesting that other parameters are involved in TFR maintenance.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Male
- Female
- Middle Aged
- Aged
- Protein Kinase Inhibitors/therapeutic use
- Remission Induction
- Adult
- Neoplasm, Residual/diagnosis
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Prognosis
- Treatment Outcome
- Aged, 80 and over
- Young Adult
- Cohort Studies
Collapse
Affiliation(s)
- Sandrine Saugues
- Hématologie FBeirorlaongdiq, uFer,a nCcHe U Clermont-Ferrand, Clermont; Equipe d'Accueil EA7453 CHELTER, Université Clermont Auvergne, Clermont-Ferrand
| | - Céline Lambert
- Unité de Biostatistiques, DRCI, CHU Clermont-Ferrand, Clermont-Ferrand
| | - Elisabeth Daguenet
- Hématologie, Institut de Cancérologie Lucien Neuwirth, Saint-Priest-en-Jarez
| | | | - Françoise Huguet
- Hématologie, Institut Universitaire du Cancer Toulouse Oncopole, CHU de Toulouse, Toulouse
| | | | | | - Martine Escoffre-Barbe
- Hématologie, Hôpital de Pontchaillou, Centre Hospitalier Universitaire de Rennes, Rennes
| | - Ali Turhan
- Inserm U935 - Service d'Hématologie, Hôpital Bicêtre AP-HP, Le Kremlin-Bicêtre
| | - Philippe Rousselot
- Hématologie Clinique, Centre Hospitalier de Versailles and UMR1184, Le Chesnay
| | - Andreï Tchirkov
- Unité de Biostatistiques, DRCI, CHU Clermont-Ferrand, Clermont-Ferrand, France; Cytogénétique Médicale, CHU Clermont-Ferrand, Clermont-Ferrand
| | - Dalil Hamroun
- Direction de La Recherche Et de L'Innovation, CHRU de Montpellier, Montpellier
| | - Eric Hermet
- Hématologie Clinique Adulte, CHU Clermont-Ferrand, Clermont-Ferrand
| | - Bruno Pereira
- Unité de Biostatistiques, DRCI, CHU Clermont-Ferrand, Clermont-Ferrand
| | - Marc G Berger
- Hématologie FBeirorlaongdiq, uFer,a nCcHe U Clermont-Ferrand, Clermont; Equipe d'Accueil EA7453 CHELTER, Université Clermont Auvergne, Clermont-Ferrand, France; Hématologie Clinique Adulte, CHU Clermont-Ferrand, Clermont-Ferrand.
| |
Collapse
|
6
|
Choi HS, Kim BS, Yoon S, Oh SO, Lee D. Leukemic Stem Cells and Hematological Malignancies. Int J Mol Sci 2024; 25:6639. [PMID: 38928344 PMCID: PMC11203822 DOI: 10.3390/ijms25126639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The association between leukemic stem cells (LSCs) and leukemia development has been widely established in the context of genetic alterations, epigenetic pathways, and signaling pathway regulation. Hematopoietic stem cells are at the top of the bone marrow hierarchy and can self-renew and progressively generate blood and immune cells. The microenvironment, niche cells, and complex signaling pathways that regulate them acquire genetic mutations and epigenetic alterations due to aging, a chronic inflammatory environment, stress, and cancer, resulting in hematopoietic stem cell dysregulation and the production of abnormal blood and immune cells, leading to hematological malignancies and blood cancer. Cells that acquire these mutations grow at a faster rate than other cells and induce clone expansion. Excessive growth leads to the development of blood cancers. Standard therapy targets blast cells, which proliferate rapidly; however, LSCs that can induce disease recurrence remain after treatment, leading to recurrence and poor prognosis. To overcome these limitations, researchers have focused on the characteristics and signaling systems of LSCs and therapies that target them to block LSCs. This review aims to provide a comprehensive understanding of the types of hematopoietic malignancies, the characteristics of leukemic stem cells that cause them, the mechanisms by which these cells acquire chemotherapy resistance, and the therapies targeting these mechanisms.
Collapse
Affiliation(s)
- Hee-Seon Choi
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.); (S.-O.O.)
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.); (S.-O.O.)
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
- Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
7
|
Rea D, Fodil S, Lengline E, Raffoux E, Cayuela JM. Tyrosine Kinase Inhibitor Discontinuation in Chronic Myeloid Leukemia: Strategies to Optimize Success and New Directions. Curr Hematol Malig Rep 2024; 19:104-110. [PMID: 38393431 DOI: 10.1007/s11899-024-00728-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
PURPOSE OF REVIEW The discovery that patients suffering from chronic myeloid leukemia who obtain deep and long-lasting molecular responses upon treatment with tyrosine kinase inhibitors may maintain their disease silent for many years after therapy discontinuation launched the era of treatment-free remission as a key management goal in clinical practice. The purpose of this review on treatment-free remission is to discuss clinical advances, highlight knowledge gaps, and describe areas of research. RECENT FINDINGS Patients in treatment-free remission are a minority, and it is believed that some may still retain a reservoir of leukemic stem cells; thus, whether they can be considered as truly cured is uncertain. Strengthening BCR::ABL1 inhibition increases deep molecular responses but is not sufficient to improve treatment-free remission, and we lack biomarkers to identify and specifically target residual cells with aggressive potential. Another level of complexity resides in the intra- and inter-patient clonal heterogeneity of minimal residual disease and characteristics of the bone marrow environment. Finding determinants of deep molecular responses achievement and elucidating varying biological mechanisms enabling either post-tyrosine kinase inhibitor chronic myeloid leukemia control or relapse may help develop innovative and safe therapies. In the light of the increasing prevalence of CML, targeting the residual leukemic stem cell pool is thought to be the key.
Collapse
Affiliation(s)
- Delphine Rea
- Service d'Hématologie Adulte, Hôpital Saint-Louis APHP, 75010, Paris, France.
- France Intergroupe Des Leucémies Myéloïdes Chroniques FiLMC, Paris, France.
| | - Sofiane Fodil
- Service d'Hématologie Adulte, Hôpital Saint-Louis APHP, 75010, Paris, France
| | - Etienne Lengline
- Service d'Hématologie Adulte, Hôpital Saint-Louis APHP, 75010, Paris, France
| | - Emmanuel Raffoux
- Service d'Hématologie Adulte, Hôpital Saint-Louis APHP, 75010, Paris, France
| | - Jean-Michel Cayuela
- France Intergroupe Des Leucémies Myéloïdes Chroniques FiLMC, Paris, France
- Laboratoire Central d'Hématologie, Hôpital Saint-Louis APHP, Paris, France
| |
Collapse
|
8
|
Panting RG, Kotecha RS, Cheung LC. The critical role of the bone marrow stromal microenvironment for the development of drug screening platforms in leukemia. Exp Hematol 2024; 133:104212. [PMID: 38552942 DOI: 10.1016/j.exphem.2024.104212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/21/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Extensive research over the past 50 years has resulted in significant improvements in survival for patients diagnosed with leukemia. Despite this, a subgroup of patients harboring high-risk genetic alterations still suffer from poor outcomes. There is a desperate need for new treatments to improve survival, yet consistent failure exists in the translation of in vitro drug development to clinical application. Preclinical screening conventionally utilizes tumor cell monocultures to assess drug activity; however, emerging research has acknowledged the vital role of the tumor microenvironment in treatment resistance and disease relapse. Current co-culture drug screening methods frequently employ fibroblasts as the designated stromal cell component. Alternative stromal cell types that are known to contribute to chemoresistance are often absent in preclinical evaluations of drug efficacy. This review highlights mechanisms of chemoresistance by a range of different stromal constituents present in the bone marrow microenvironment. Utilizing an array of stromal cell types at the early stages of drug screening may enhance the translation of in vitro drug development to clinical use. Ultimately, we highlight the need to consider the bone marrow microenvironment in drug screening platforms for leukemia to develop superior therapies for the treatment of high-risk patients with poor prognostic outcomes.
Collapse
Affiliation(s)
- Rhiannon G Panting
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia
| | - Rishi S Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia; School of Medicine, University of Western Australia, Perth, Western Australia, Australia; Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Laurence C Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia; Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia.
| |
Collapse
|
9
|
Benjamin ESB, Vinod E, Illangeswaran RSS, Rajamani BM, Vidhyadharan RT, Bagchi A, Maity A, Mohan A, Parasuraman G, Amirtham SM, Abraham A, Velayudhan SR, Balasubramanian P. Immortalised chronic myeloid leukemia (CML) derived mesenchymal stromal cells (MSCs) line retains the immunomodulatory and chemoprotective properties of CML patient-derived MSCs. Cell Signal 2024; 116:111067. [PMID: 38281615 DOI: 10.1016/j.cellsig.2024.111067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
Despite the success of Tyrosine kinase inhibitors (TKIs) in treating chronic myeloid leukemia (CML), leukemic stem cells (LSCs) persist, contributing to relapse and resistance. CML Mesenchymal Stromal Cells (MSCs) help in LSC maintenance and protection from TKIs. However, the limited passage and self-differentiation abilities of primary CML MSCs hinder extensive research. To overcome this, we generated and characterized an immortalised CML patient-derived MSC (iCML MSC) line and assessed its role in LSC maintenance. We also compared the immunophenotype and differentiation potential between primary CML MSCs at diagnosis, post-treatment, and with normal bone marrow MSCs. Notably, CML MSCs exhibited enhanced chondrogenic differentiation potential compared to normal MSCs. The iCML MSC line retained the trilineage differentiation potential and was genetically stable, enabling long-term investigations. Functional studies demonstrated that iCML MSCs protected CML CD34+ cells from imatinib-induced apoptosis, recapitulating the bone marrow microenvironment-mediated resistance observed in patients. iCML MSC-conditioned media enabled CML CD34+ and AML blast cells to proliferate rapidly, with no impact on healthy donor CD34+ cells. Gene expression profiling revealed dysregulated genes associated with calcium metabolism in CML CD34+ cells cocultured with iCML MSCs, providing insights into potential therapeutic targets. Further, cytokine profiling revealed that the primary CML MSC lines abundantly secreted 25 cytokines involved in immune regulation, supporting the hypothesis that CML MSCs create an immune modulatory microenvironment that promotes growth and protects against TKIs. Our study establishes the utility of iCML MSCs as a valuable model to investigate leukemic-stromal interactions and study candidate genes involved in mediating TKI resistance in CML LSCs.
Collapse
Affiliation(s)
- Esther Sathya Bama Benjamin
- Department of Haematology, Christian Medical College, Ranipet campus, India; Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, India
| | - Elizabeth Vinod
- Department of Physiology, Christain Medical College, Vellore, India; Centre for Stem Cell Research (A Unit of inStem, Bengaluru), CMC Campus, Vellore, India
| | | | | | | | - Abhirup Bagchi
- Centre for Stem Cell Research (A Unit of inStem, Bengaluru), CMC Campus, Vellore, India
| | - Arnab Maity
- Department of Haematology, Christian Medical College, Ranipet campus, India
| | - Ajith Mohan
- Department of Haematology, Christian Medical College, Ranipet campus, India
| | | | | | - Aby Abraham
- Department of Haematology, Christian Medical College, Ranipet campus, India
| | - Shaji R Velayudhan
- Department of Haematology, Christian Medical College, Ranipet campus, India; Centre for Stem Cell Research (A Unit of inStem, Bengaluru), CMC Campus, Vellore, India
| | | |
Collapse
|