1
|
Abstract
PURPOSE OF REVIEW The persistence of HIV-1-infected cells, despite the introduction of the combinatorial antiretroviral therapy, is a major obstacle to HIV-1 eradication. Understanding the nature of HIV reservoir will lead to novel therapeutic approaches for the functional cure or eradication of the virus. In this review, we will update the recent development in imaging applications toward HIV-1/simian immunodeficiency virus (SIV) viral reservoirs research and highlight some of their limitations. RECENT FINDINGS CD4 T cells are the primary target of HIV-1/SIV and the predominant site for productive and latent reservoirs. This viral reservoir preferentially resides in lymphoid compartments that are difficult to access, which renders sampling and measurements problematical and a hurdle for understanding HIV-1 pathogenicity. Novel noninvasive technologies are needed to circumvent this and urgently help to find a cure for HIV-1. Recent technological advancements have had a significant impact on the development of imaging methodologies allowing the visualization of relevant biomarkers with high resolution and analytical capacity. Such methodologies have provided insights into our understanding of cellular and molecular interactions in health and disease. SUMMARY Imaging of the HIV-1 reservoir can provide significant insights for the nature (cell types), spatial distribution, and the role of the tissue microenvironment for its in vivo dynamics and potentially lead to novel targets for the virus elimination.
Collapse
|
2
|
Moysi E, Del Rio Estrada PM, Torres-Ruiz F, Reyes-Terán G, Koup RA, Petrovas C. In Situ Characterization of Human Lymphoid Tissue Immune Cells by Multispectral Confocal Imaging and Quantitative Image Analysis; Implications for HIV Reservoir Characterization. Front Immunol 2021; 12:683396. [PMID: 34177929 PMCID: PMC8221112 DOI: 10.3389/fimmu.2021.683396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
CD4 T cells are key mediators of adaptive immune responses during infection and vaccination. Within secondary lymphoid organs, helper CD4 T cells, particularly those residing in germinal centers known as follicular helper T cells (Tfh), provide critical help to B-cells to promote their survival, isotype switching and selection of high affinity memory B-cells. On the other hand, the important role of Tfh cells for the maintenance of HIV reservoir is well documented. Thus, interrogating and better understanding the tissue specific micro-environment and immune subsets that contribute to optimal Tfh cell differentiation and function is important for designing successful prevention and cure strategies. Here, we describe the development and optimization of eight multispectral confocal microscopy immunofluorescence panels designed for in depth characterization and immune-profiling of relevant immune cells in formalin-fixed paraffin-embedded human lymphoid tissue samples. We provide a comprehensive library of antibodies to use for the characterization of CD4+ T-cells -including Tfh and regulatory T-cells- as well as CD8 T-cells, B-cells, macrophages and dendritic cells and discuss how the resulting multispectral confocal datasets can be quantitatively dissected using the HistoCytometry pipeline to collect information about relative frequencies and immune cell spatial distributions. Cells harboring actively transcribed virus are analyzed using an in-situ hybridization assay for the characterization of HIV mRNA positive cells in combination with additional protein markers (multispectral RNAscope). The application of this methodology to lymphoid tissues offers a means to interrogate multiple relevant immune cell targets simultaneously at increased resolution in a reproducible manner to guide CD4 T-cell studies in infection and vaccination.
Collapse
Affiliation(s)
- Eirini Moysi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Perla M Del Rio Estrada
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Fernanda Torres-Ruiz
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Gustavo Reyes-Terán
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico.,Comisión Coordinadora de Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Secretaría de Salud, Mexico City, Mexico
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Constantinos Petrovas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
3
|
Cattin A, Wiche Salinas TR, Gosselin A, Planas D, Shacklett B, Cohen EA, Ghali MP, Routy JP, Ancuta P. HIV-1 is rarely detected in blood and colon myeloid cells during viral-suppressive antiretroviral therapy. AIDS 2019; 33:1293-1306. [PMID: 30870200 PMCID: PMC6686847 DOI: 10.1097/qad.0000000000002195] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The aim of this study was to explore the contribution of blood and colon myeloid cells to HIV persistence during antiretroviral therapy (ART). DESIGN Leukapheresis was collected from HIV-infected individuals with undetectable plasma viral load during ART (HIV + ART; n = 15) and viremics untreated (HIV+; n = 6). Rectal sigmoid biopsies were collected from n = 8 HIV+ART. METHODS Myeloid cells (total monocytes (Mo), CD16/CD16 Mo, CD1c dendritic cells) and CD4 T cells were isolated by magnetic-activated cell sorting (MACS) and/or fluorescence-activated cell sorting (FACS) from peripheral blood. Matched myeloid and CCR6CD4 T cells were isolated from blood and rectal biopsies by FACS. Levels of early (RU5 primers), late (Gag primers) and/or integrated HIV-DNA (Alu/HIV primers) were quantified by nested real-time PCR. Replication-competent HIV was amplified by co-culturing cells from HIV-positive individuals with CD3/CD28-activated CD4 T cells from uninfected donors. RESULTS Early/late but not integrated HIV reverse transcripts were detected in blood myeloid subsets of four out of 10 HIV+ART; in contrast, integrated HIV-DNA was exclusively detected in CD4 T cells. In rectal biopsies, late HIV reverse transcripts were detected in myeloid cells and CCR6CD4 T cells from one out of eight and seven out of eight HIV+ART individuals, respectively. Replication-competent HIV was outgrown from CD4 T cells but not from myeloid of untreated/ART-treated HIV-positive individuals. CONCLUSION In contrast to CD4 T cells, blood and colon myeloid cells carry detectable HIV only in a small fraction of HIV+ART individuals. This is consistent with the documented resistance of Mo to HIV infection and the rapid turnover of Mo-derived macrophages in the colon. Future assessment of multiple lymphoid and nonlymphoid tissues is required to include/exclude myeloid cells as relevant HIV reservoirs during ART.
Collapse
Affiliation(s)
- Amélie Cattin
- CHUM-Research Centre, Montréal, Qc, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Qc, Canada
| | - Tomas Raul Wiche Salinas
- CHUM-Research Centre, Montréal, Qc, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Qc, Canada
| | | | - Delphine Planas
- CHUM-Research Centre, Montréal, Qc, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Qc, Canada
| | | | - Eric A. Cohen
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Qc, Canada
- Institut de Recherche Clinique de Montréal, Montréal, Qc, Canada
| | - Maged P. Ghali
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, Canada
| | - Jean-Pierre Routy
- Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service and Research Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Petronela Ancuta
- CHUM-Research Centre, Montréal, Qc, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Qc, Canada
| |
Collapse
|
4
|
Novel advances on tissue immune dynamics in HIV/simian immunodeficiency virus: lessons from imaging studies. Curr Opin HIV AIDS 2019; 13:112-118. [PMID: 29227356 DOI: 10.1097/coh.0000000000000437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To describe recent findings on the effect of HIV/SIV infection on lymph node viral and T-cell dynamics using imaging-based methodologies. RECENT FINDINGS Chronic infection, particularly HIV/SIV, alters dramatically the microenvironment, immune cell frequency, distribution, function and tissue organization of secondary lymphoid tissues. These changes are not always reversible. Over the past few years, the implementation of advanced imaging protocols on human lymph node biopsies as well as on longitudinal lymphoid tissues samples from nonhuman primates (NHP) have provided a wealth of information on how local immune responses evolve over time in response to a persisting retroviral pathogen. Most of the information concerns cytotoxic and helper T cells and viral dynamics. In this review, we detail this information focusing on HIV/SIV infection. We also comment on the gaps that imaging technologies have bridged in our understanding and discuss the translational value of these new findings in the light of emerging therapeutic agendas. SUMMARY Novel imaging platforms allow for dissecting the spatiotemporal dynamics of immune interactions further improving our understanding of the interplay between virus and host and providing important information for designing successful preventive and curative strategies.
Collapse
|
5
|
Moysi E, Petrovas C, Koup RA. The role of follicular helper CD4 T cells in the development of HIV-1 specific broadly neutralizing antibody responses. Retrovirology 2018; 15:54. [PMID: 30081906 PMCID: PMC6080353 DOI: 10.1186/s12977-018-0437-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/28/2018] [Indexed: 01/23/2023] Open
Abstract
The induction of HIV-1-specific antibodies that can neutralize a broad number of isolates is a major goal of HIV-1 vaccination strategies. However, to date no candidate HIV-1 vaccine has successfully elicited broadly neutralizing antibodies of sufficient quality and breadth for protection. In this review, we focus on the role of follicular helper CD4 T-cells (Tfh) in the development of such cross-reactive protective antibodies. We discuss germinal center (GC) formation and the dynamics of Tfh and GC B cells during HIV-1/SIV infection and vaccination. Finally, we consider future directions for the study of Tfh and offer perspective on factors that could be modulated to enhance Tfh function in the context of prophylactic vaccination.
Collapse
Affiliation(s)
- Eirini Moysi
- Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, USA
| | | | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, USA
| |
Collapse
|
6
|
Macrophages in Progressive Human Immunodeficiency Virus/Simian Immunodeficiency Virus Infections. J Virol 2016; 90:7596-606. [PMID: 27307568 DOI: 10.1128/jvi.00672-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cells that are targeted by primate lentiviruses (HIV and simian immunodeficiency virus [SIV]) are of intense interest given the renewed effort to identify potential cures for HIV. These viruses have been reported to infect multiple cell lineages of hematopoietic origin, including all phenotypic and functional CD4 T cell subsets. The two most commonly reported cell types that become infected in vivo are memory CD4 T cells and tissue-resident macrophages. Though viral infection of CD4 T cells is routinely detected in both HIV-infected humans and SIV-infected Asian macaques, significant viral infection of macrophages is only routinely observed in animal models wherein CD4 T cells are almost entirely depleted. Here we review the roles of macrophages in lentiviral disease progression, the evidence that macrophages support viral replication in vivo, the animal models where macrophage-mediated replication of SIV is thought to occur, how the virus can interact with macrophages in vivo, pathologies thought to be attributed to viral replication within macrophages, how viral replication in macrophages might contribute to the asymptomatic phase of HIV/SIV infection, and whether macrophages represent a long-lived reservoir for the virus.
Collapse
|